Section Spéciale / Mastère
Chimie des Procédés

LE NITRATE D’AMMONIUM
Description, production, utilisations et précautions d’usage

Par
Isabelle BRUSSET
Fabien LEVEAU
Pascal SPINAT
Alexandre TRANI
Julien VEROLLET

Ingénieurs chimistes

Sous la direction des Professeurs Michel DELMAS et Jean-Louis LACOUT

Février 2002
REMERCIEMENTS

Nos remerciements s’adressent tout particulièrement aux Professeurs Michel DELMAS et Jean-Louis LACOUT pour leurs précieux conseils ainsi qu’à Monsieur Félix STERNICHA pour nous avoir fait profiter de ses connaissances.

Nous tenons également à remercier le Professeur Patrick DUVERNEUIL, Directeur des Etudes, Monsieur René QUEAU et Madame Béatrice GUINARD pour leur aide précieuse.
INTRODUCTION

Les entreprises chimiques occupent périodiquement la une des média lorsqu’un stockage ou une unité de fabrication explode quelque part dans le monde. Le nitrate d’ammonium fait partie des produits impliqués dans de tels accidents. Stable pour les uns, dangereux pour les autres, sa chimie est des plus complexes. L’explosion survenue à Toulouse le 21 septembre 2001 dans l’usine AZF a détruit la moitié de notre Ecole, tué un de nos anciens et blessé de nombreux collègues. Certes, cette molécule était présentée dans les cours de chimie industrielle, mais plus comme une molécule d’hier que porteuse de développement à venir. Il nous a paru utile, dans ce contexte, de mieux connaître cette molécule qui vient de perturber sérieusement notre quotidien.

Ce travail a donc pour objet de résumer les principaux éléments connus à ce jour sur le nitrate d’ammonium de façon, entre autres, d’aider ceux qui cherchent à savoir ce qui a pu se passer à l’usine AZF de Toulouse.

La compréhension de tels accidents passe par une connaissance approfondie des propriétés physico-chimiques du nitrate d’ammonium ainsi que des différents procédés utilisés dans le monde pour le fabriquer. Sa stabilité dépend d’une part de sa réactivité et d’autre part des différentes utilisations pour lesquelles il est produit. De bonnes pratiques d’usage doivent, dès lors, être appliquées à tous les stades de la production et de l’exploitation afin d’assurer une sécurité optimale pour le personnel et l’ensemble de la population.

Notre propos ne sera pas, loin de là, exhaustif. Il pourra être enrichi, à tout moment, par tous ceux qui ont sur le sujet des informations complémentaires de celles évoquées dans les lignes qui vont suivre.
1. Propriétés physiques et chimiques

Le nitrate d’ammonium, NH₄NO₃ (n° CAS* : 6484-52-2), n’est pas un composé naturel. Il a été élaboré pour la première fois en 1659 par Hans Rudolf Glauber, qui l’appela « nitrum flammans » en raison de la différence entre la couleur jaune de sa flamme et de celle du nitrate de potassium.

Le nitrate d’ammonium est produit principalement à partir d’ammoniac et d’acide nitrique selon la réaction :

\[\text{NH}_3 + \text{HNO}_3 \rightarrow \text{NH}_4\text{NO}_3 \]

De nos jours, son volume de production en fait le plus important des composés azotés. Il est utilisé principalement comme engrais azoté et comme agent entrant dans la composition des explosifs civils et militaires.

1.1 Propriétés chimiques

Les principales caractéristiques[1, 2, 3] du nitrate d’ammonium sont rassemblées ci-dessous :

Formule chimique : NH₄NO₃
Masse molaire* : 80,05 g.mol⁻¹
Densité* d₄²₀ : 1,725
Chaleur spécifique* entre 0 et 31°C : 1,70 J. g⁻¹.K⁻¹
Point de fusion* : 169,6 - 170,0 °C
pH* d’une solution à 0,1 M dans l’eau : 5,43

Cette molécule à l’état pur possède une composition massique[1] bien définie (tableau 1.1) :

<table>
<thead>
<tr>
<th>atome</th>
<th>pourcentage massique</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>5,04</td>
</tr>
<tr>
<td>N</td>
<td>35,00</td>
</tr>
<tr>
<td>O</td>
<td>59,96</td>
</tr>
</tbody>
</table>

Tableau 1.1 Composition du NH₄NO₃

1.2 Données thermodynamiques

- enthalpie de formation du nitrate d’ammonium[3] :
 \[\text{N}_2(g) + 2 \text{H}_2 + \frac{3}{2} \text{O}_2(l) \rightarrow \text{NH}_4\text{NO}_3(s) \quad \Delta H_f^{\circ} = 366 \text{ kJ.mol}^{-1} \]

- enthalpie de réaction du nitrate d’ammonium[3] :
 [1] \[\text{NH}_3(g) + \text{HNO}_3(l) \rightarrow \text{NH}_4\text{NO}_3(s) \quad \Delta H_1 = 146 \text{ kJ.mol}^{-1} \]
 [2] \[\text{NH}_3(g) + \text{HNO}_3(g) \rightarrow \text{NH}_4\text{NO}_3(s) \quad \Delta H_2 = 172 \text{ kJ.mol}^{-1} \]

Ces réactions sont utilisées dans les procédés de fabrication du nitrate d’ammonium.

* : Les mots affectés d’un astérisque dans le texte sont explicités dans le glossaire
enthalpie de décomposition du nitrate d’ammonium⁴:

\[
\text{NH}_4\text{NO}_3 \rightarrow 2 \text{H}_2\text{O} + \text{N}_2 + \frac{1}{2}\text{O}_2
\]

\[\Delta H_d = 2 \Delta H^\circ_{(\text{H}_2\text{O})} - \Delta H^\circ_{(\text{NH}_4\text{NO}_3)} = -2 \times 241,8 + 365,56 = -118,04 \text{ kJ.mol}^{-1}\]

enthalpie de décomposition du nitrate d’ammonium avec formation de protoxyde d’azote⁵:

[3] \[\text{NH}_4\text{NO}_3 \rightarrow 2 \text{H}_2\text{O}_{(l)} + \text{N}_2\text{O}_{(g)} \quad \Delta H_3 = -126 \text{ kJ.mol}^{-1}\]

[4] \[\text{NH}_4\text{NO}_3 \rightarrow 2 \text{H}_2\text{O}_{(g)} + \text{N}_2\text{O}_{(g)} \quad \Delta H_4 = -43 \text{ kJ.mol}^{-1}\]

autres réactions de décomposition du nitrate d’ammonium⁵:

Vers 300°C, une décomposition avec apparition de vapeurs nitreuses et d’azote libre en proportion croissante est observée :

\[4 \text{NH}_4\text{NO}_3 \rightarrow 8 \text{H}_2\text{O} + 3 \text{N}_2 + \text{N}_2\text{O}_4\]

\[3 \text{NH}_4\text{NO}_3 \rightarrow 6 \text{H}_2\text{O} + 2 \text{N}_2 + \text{N}_2\text{O}_3\]

\[2 \text{NH}_4\text{NO}_3 \rightarrow 4 \text{H}_2\text{O} + \text{N}_2 + 2 \text{NO}\]

\[2 \text{NH}_4\text{NO}_3 \rightarrow 4 \text{H}_2\text{O} + 2 \text{N}_2 + \text{O}_2\]

données thermodynamiques de décomposition thermique :

Stable à température et pression ordinaires, le nitrate d’ammonium pur se décompose de manière complexe selon des réactions présentant différents effets thermodynamiques (tableau 1.2)⁶:

<table>
<thead>
<tr>
<th>Réaction</th>
<th>Température (°C)</th>
<th>Chaleur de réaction (J.g⁻¹) a</th>
<th>Volume de gaz libéré b (cm³.g⁻¹)</th>
<th>Température de fin de réaction (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{NH}_4\text{NO}_3 \rightarrow \text{NH}_3 + \text{HNO}_3 \quad</td>
<td>170 - 180</td>
<td>2144</td>
<td>560</td>
<td>endothermique *</td>
</tr>
<tr>
<td>\text{NH}_4\text{NO}_3 \rightarrow \text{N}_2 + 2 \text{H}_2\text{O} \quad</td>
<td>210 - 260</td>
<td>-525</td>
<td>840</td>
<td>497</td>
</tr>
<tr>
<td>\text{NH}_2\text{NO}_3 \rightarrow \text{N}_2 + 2 \text{H}_2\text{O} + 1/2 \text{O}_2 \quad</td>
<td>300</td>
<td>-1465</td>
<td>981</td>
<td>1287</td>
</tr>
</tbody>
</table>

a) pour convertir les joules en calories, diviser par 4,184
b) dans les conditions normales de température et de pression.

Tableau 1.2 Données thermodynamiques de décomposition du nitrate d’ammonium

Section Spéciale / Mastère Chimie des Procédés – Nitrate d’ammonium
chaleurs spécifiques de solutions aqueuses de nitrate d’ammonium\[^2\] :

<table>
<thead>
<tr>
<th>% NH(_4)NO(_3)</th>
<th>chaleurs spécifiques Cp (J.mol(^{-1}).K(^{-1}))</th>
<th>chaleurs spécifiques Cp (J.g(^{-1}).K(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,9</td>
<td>320,8</td>
<td>4,038</td>
</tr>
<tr>
<td>9,1</td>
<td>309,6</td>
<td>3,870</td>
</tr>
<tr>
<td>15,1</td>
<td>294,4</td>
<td>3,678</td>
</tr>
<tr>
<td>28,6</td>
<td>241,6</td>
<td>3,021</td>
</tr>
<tr>
<td>47,1</td>
<td>233,6</td>
<td>2,916</td>
</tr>
<tr>
<td>64</td>
<td>204,0</td>
<td>2,552</td>
</tr>
</tbody>
</table>

Tableau 1.3 Chaleurs spécifiques de solutions aqueuses de nitrate d’ammonium

chaleur de dilution

Selon P. Pascal\[^6\], la dissolution du nitrate d’ammonium est décrite comme étant accompagnée d’une absorption de chaleur considérable, utilisée pour la production de mélanges réfrigérants. La température au contact de la glace se fixe à une valeur très basse, qui peut atteindre -17°C. D’ailleurs, Thomsen et Berthelot\[^6\] donnent des valeurs concordantes de 6322 et 6200 calories pour la chaleur absorbée dans la dissolution d’une molécule-gramme du sel dans un excès d’eau.

Enfin, la chaleur de dilution Q d’une solution, de composition 2 (NH\(_4\))NO\(_3\) + 5 H\(_2\)O, par n molécules d’eau est, d’après Thomsen\[^6\] :

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>5</th>
<th>15</th>
<th>35</th>
<th>95</th>
<th>195</th>
<th>395</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q (cal)</td>
<td>+670</td>
<td>+1280</td>
<td>+2520</td>
<td>+3580</td>
<td>+4580</td>
<td>+5020</td>
<td>+5230</td>
</tr>
</tbody>
</table>

Tableau 1.4 Chaleur de dilution en fonction du nombre de molécules d’eau

1.3 Données cristallographiques\[^{7-11}\]

Le nitrate d’ammonium se présente sous la forme d’un solide cristallin blanc. Ce solide possède 5 formes cristallines répertoriées dans le tableau 1.5\[^{12,12}\].

<table>
<thead>
<tr>
<th>Phase</th>
<th>Gamme température (°C)</th>
<th>Système cristallin</th>
<th>Paramètres de maille (Å)</th>
<th>Motifs par maille</th>
<th>Volume de la maille (Å(^3))</th>
<th>Volume de 8 motifs (Å(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>125,2 - 169,6</td>
<td>Cubique</td>
<td>a=4,366 c=4,920</td>
<td>1</td>
<td>83,2</td>
<td>665,6</td>
</tr>
<tr>
<td>II</td>
<td>84,2 - 125,2</td>
<td>Quadratique</td>
<td>a=5,696 b=7,650 c=5,830</td>
<td>2</td>
<td>159,6</td>
<td>638,4</td>
</tr>
<tr>
<td>III</td>
<td>32,1 - 84,2</td>
<td>Orthorhombique</td>
<td>a=7,140 b=7,650 c=5,830</td>
<td>4</td>
<td>318,4</td>
<td>636,9</td>
</tr>
<tr>
<td>IV</td>
<td>-18 - 32,1</td>
<td>Orthorhombique</td>
<td>a=5,745 b=5,438 c=4,942</td>
<td>2</td>
<td>154,4</td>
<td>617,6</td>
</tr>
<tr>
<td>V</td>
<td>< -18</td>
<td>Orthorhombique</td>
<td>a=7,885 b=7,920 c=9,795</td>
<td>8</td>
<td>611,7</td>
<td>611,7</td>
</tr>
</tbody>
</table>

Tableau 1.5 Formes cristallographiques du nitrate d’ammonium à pression atmosphérique
Les formes allotropiques* sont représentées ci-dessous\cite{8,9,11}:

Figure 1.1 structure 3D de la forme V

Figure 1.2 Structure de la forme IV

Figure 1.3 Structure de la forme II

Figure 1.4 Structure de la forme III

Figure 1.5 Structure cubique de la forme I
Tout changement de phase implique une déformation du cristal, donc une réorganisation de la structure cristalline. Des variations de volume lors des transitions de phases sont observables comme le montre le tableau 1.6.

<table>
<thead>
<tr>
<th>Transition</th>
<th>V-IV</th>
<th>IV-III</th>
<th>III-II</th>
<th>II-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pourcentage de dilatation</td>
<td>0,96%</td>
<td>3,13%</td>
<td>0,24%</td>
<td>4,26%</td>
</tr>
</tbody>
</table>

Tableau 1.6 Variation de volume lors des transitions de phases

Ces transitions sont accomplies d’une libération d’énergie. Ces variations d’énergie sont loin d’être négligeables et sont suffisantes pour assurer la dessiccation du produit granulé à partir de solutions contenant encore 4% d’eau.

<table>
<thead>
<tr>
<th>Transition</th>
<th>IV-III</th>
<th>III-II</th>
<th>II-I</th>
<th>I-liquide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaleur de transformation allotropique (kcal.kg⁻¹)</td>
<td>-5,0</td>
<td>-4,5</td>
<td>-12,0</td>
<td>-16,2</td>
</tr>
</tbody>
</table>

Tableau 1.7 Chaleurs de transformation allotropique

Notons l’importance du point à 32,1°C qui est proche des températures de stockage pendant les périodes de forte chaleur et qui est également la température à laquelle survient une forte dilatation. En effet, si au cours du stockage de ce composé, les variations de température font passer le produit par la température de 32,1°C, par échauffements et refroidissements alternés, des ruptures entre les macles apparaissent, rendant possible la transition de phase. Les dilatations et les contractions, qui résultent de ces changements de phase répétitifs, peuvent réduire peu à peu les grains en plus petites particules, ce qui diminue l’aptitude du produit à « couler » et ce qui peut aussi endommager les emballages.

Les variations du volume spécifique en fonction de la température sont représentées sur la figure 1.6.

Figure 1.6 Variation du volume spécifique en fonction de la température[11]

Les cercles représentent les valeurs expérimentales de Cohen, Kooy et de Retgers.
Les courbes en trait plein ont été obtenues par Bellati, Romanese et Finazzi et les courbes en pointillés par Behn.
Le diagramme P,T du nitrate d’ammonium (Figure 1.7) représente les domaines d’existence des différentes formes allotropiques en fonction de la température et de la pression.

![Diagramme P,T du nitrate d’ammonium](image1)

Figure 1.7 Diagramme P (atm), T (°C) du nitrate d’ammonium

L’élévation de la pression déplace les points de transition (Bellatti et Lussana), (Tamman), (Bridgmann). Il n’y a diminution de ces températures que pour les couples V-IV, II-VI, III-II, la seconde forme apparaissant aux dépens de la première avec contraction.

L’équilibre simultané des trois cristaux II-III-IV a lieu à 63,3°C sous 860 atm (point T) ; celui des trois formes I-II-VI à 186,7°C sous 9020 atm ; celui des trois nitrates II-IV-VI à 169,2°C sous 9160 atm (points T' et T''). Le point de fusion atteint 200°C sous 1000 atm.

La forme IV orthorhombique est celle des cristaux obtenus par évaporation à la température ordinaire d’une solution aqueuse de nitrate d’ammonium ; ce sont des cristaux aciculaires formés en bâtonnets, facilement déformables, que l’on peut courber avec les doigts.

Il faut ajouter que, d’après P. Pascal, les transformations II → III et IV → III ne sont observables que si le nitrate renferme un peu d’humidité. Avec le produit sec, il y a passage direct de II à IV vers 50-55°C, comme le confirment, figure 1.8, les expériences d’analyse thermique différentielle où le nitrate, ayant perdu toute humidité après un chauffage à 160°C, est refroidi vers 55°C.

Les formes II et IV sont si voisines que Wallerant avait proposé de les considérer comme identiques. Le passage de l’une à l’autre se fait d’ailleurs facilement sous forte pression. Volkovich, Rubinchik et Kozhin ont montré par ailleurs qu’un refroidissement rapide (2°C/min) permet de passer directement de II à IV sans que la variété III n’apparaisse.
1.4 Données sur les mélanges à base de nitrate d’ammonium

- solubilité dans l’eau

Le nitrate d’ammonium est particulièrement soluble dans l’eau, comme le montre le tableau 1.8[3].

<table>
<thead>
<tr>
<th>Température (°C)</th>
<th>Solubilité de NH₄NO₃ (g / 100 g d’eau)</th>
<th>Solubilité de NH₄NO₃ (g / 100 g de solution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>118</td>
<td>54,2</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>60,0</td>
</tr>
<tr>
<td>20</td>
<td>187</td>
<td>65,2</td>
</tr>
<tr>
<td>30</td>
<td>232</td>
<td>69,9</td>
</tr>
<tr>
<td>40</td>
<td>297</td>
<td>74,8</td>
</tr>
<tr>
<td>50</td>
<td>346</td>
<td>77,6</td>
</tr>
<tr>
<td>60</td>
<td>410</td>
<td>81,4</td>
</tr>
<tr>
<td>70</td>
<td>499</td>
<td>83,3</td>
</tr>
<tr>
<td>80</td>
<td>576</td>
<td>85,2</td>
</tr>
<tr>
<td>90</td>
<td>740</td>
<td>88,1</td>
</tr>
<tr>
<td>100</td>
<td>843</td>
<td>89,4</td>
</tr>
</tbody>
</table>

Tableau 1.8 Solubilité du nitrate d’ammonium

Un gramme de nitrate d’ammonium se dissout dans 0,5 mL d’eau à température ambiante et dans 0,1 mL d’eau bouillante.

Sa dissolution dans l’eau est très endothermique*. Sa chaleur de dissolution à 18°C est de 26,4 kJ/mol dans une grande quantité d’eau et de 15 kJ/mol dans une solution saturée. Cette propriété peut être utilisée pour des mélanges réfrigérants.

Le nitrate d’ammonium solide est extrêmement hygroscopique* et récupère l’humidité de l’air. L’effet du sel dissous sur la baisse de tension de vapeur est montré dans le tableau 1.9[2] :

<table>
<thead>
<tr>
<th>Température (°C)</th>
<th>Tension de vapeur* d’eau (kPa)</th>
<th>Tension de vapeur de sol. sat. (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1,2</td>
<td>0,85</td>
</tr>
<tr>
<td>20</td>
<td>2,3</td>
<td>1,5</td>
</tr>
<tr>
<td>30</td>
<td>4,2</td>
<td>2,5</td>
</tr>
<tr>
<td>40</td>
<td>7,4</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Tableau 1.9 Tension de vapeur de solutions saturées de nitrate d’ammonium

- solubilité dans d’autres liquides

Le nitrate d’ammonium est très soluble dans quelques solvants non aqueux tels que l’ammoniac liquide. Cette solubilité permet par exemple de transporter de l’ammoniac anhydre dans des wagons travaillant à une pression peu élevée (inférieure à 3 bars). Ces solutions d’ammoniac liquide sont appelées liqueurs de Barett.
Le nitrate d’ammonium se dissout aussi dans le méthanol (à hauteur de 20% à 30°C et de 40% à 60°C) et dans l’éthanol (4% à 20°C). Sa solubilité est très faible dans l’acétone et nulle dans l’éther.

➤ densité

La densité du nitrate d’ammonium en solution varie en fonction de la température et de sa concentration. Les valeurs sont rassemblées dans le tableau 1.10:

<table>
<thead>
<tr>
<th>% NH₄NO₃</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tₑₕ (°C)</td>
<td>101</td>
<td>102,5</td>
<td>104</td>
<td>107,5</td>
<td>109,5</td>
<td>113,5</td>
<td>119,5</td>
<td>128,5</td>
<td>136</td>
<td>147</td>
<td>170</td>
<td>180</td>
</tr>
</tbody>
</table>

Tableau 1.10 Densité de solutions de nitrate d’ammonium
(abscisse : % massique en nitrate d’ammonium ; ordonnée : température en °C)

➤ températures d’ébullition

Le tableau ci-dessous montre l’élévation de la température d’ébullition de solutions aqueuses de nitrate d’ammonium avec l’augmentation du taux de nitrate d’ammonium.

<table>
<thead>
<tr>
<th>% NH₄NO₃</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tₑₕ (°C)</td>
<td>101</td>
<td>102,5</td>
<td>104</td>
<td>107,5</td>
<td>109,5</td>
<td>113,5</td>
<td>119,5</td>
<td>128,5</td>
<td>136</td>
<td>147</td>
<td>170</td>
<td>180</td>
</tr>
</tbody>
</table>

Tableau 1.11 Températures d’ébullition de solutions de nitrate d’ammonium

diagramme de phases du système binaire NH₄NO₃ / H₂O (figure 1.9):

Les chiffres romains correspondent aux formes allotropiques
tension de vapeur d’une solution de nitrate d’ammonium dans l’eau en fonction de la température et de sa composition massique (figure 1.10)[3].

Figure 1.10
2. Procédés de fabrication [2,3]

2.1 Généralités

Le nitrate d’ammonium est produit principalement à partir d’ammoniac et d’acide nitrique. La réaction du nitrate de calcium avec l’ammoniac et le dioxyde de carbone est aussi utilisée pour produire le nitrate d’ammonium.

De nombreux procédés permettent de produire le nitrate d’ammonium. Chaque usine a ses particularités. Bien que les procédés semblent simples au premier abord (cf. figure 2.2), ils diffèrent dans les détails. Dans la plupart des cas, trois grandes étapes ressortent :

- la neutralisation de l’ammoniac par l’acide nitrique
- l’évaporation de la solution neutralisée
- le contrôle de la taille des particules lors de la cristallisation et des caractéristiques du produit sec

Il est à noter que, dans certains cas, la seconde et la troisième étape peuvent être combinées.

2.1.1 Neutralisation [13,14]

La plupart des procédés de fabrication fonctionnent en continu. Les systèmes modernes utilisent le contrôle automatique du pH. Un programmateur et deux vannes automatiques règlent la proportion théorique d’ammoniac et d’acide nitrique entrant dans le réacteur. Habituellement, un léger excès d’acide nitrique, qui est le composé le moins volatil des 2 réactifs, est maintenu pendant la neutralisation. Plus la température dans le réacteur est grande, plus il est important de maintenir une valeur constante de pH et d’éviter l’introduction de chlorures, de métaux lourds et de composés organiques.

La neutralisation de l’acide nitrique à 45% - 65% en poids avec de l’ammoniac est extrêmement exothermique. Elle est accompagnée par la libération de 100 à 115 J/mol. La température de la solution neutralisée peut être contrôlée par l’addition régulée de matière ou de température. Cet échange thermique n’est pas avantageux économiquement. En effet, dans la plupart des procédés, cette chaleur de réaction est utilisée pour l’évaporation partielle ou totale de l’eau. Pour des raisons de sécurité, la quantité de nitrate d’ammonium à température élevée doit être réduite au maximum.

Au cours de la neutralisation, les composés doivent être mélangés rapidement et en totalité dans le réacteur pour éviter des pertes d’azote, des points locaux de chaleur et la décomposition du nitrate d’ammonium. Ainsi, le réacteur est un conduit tubulaire ascendant de volume très faible. Le réacteur et l’évaporateur sont généralement construits à partir d’alliages inoxydables contenant peu de carbone (moins de 0,1%). La vapeur est ensuite séparée de la

Figure 2.1 Boucle de neutralisation
solution de nitrate d’ammonium par un cyclone. Une fraction de la phase liquide est soutirée, le reste est recyclé sur la colonne de neutralisation par une pompe ou par simple entraînement. La présence d’une pompe dans ce genre de circuit présente cependant plusieurs risques (fuites, risque d’échauffement dans les garnitures, réduction du coefficient d’utilisation du matériel).

Des solutions de nitrate d’ammonium à 95% - 97% peuvent être obtenues selon la pression et la concentration de l’acide nitrique.

Figure 2.2 Représentation générale du procédé avant la mise en forme

2.1.2 Evaporation

Les procédures diffèrent selon la teneur en eau des réactifs et le contrôle des températures. Parmi les méthodes largement utilisées jusqu’en 1945, la solution neutre de nitrate d’ammonium subit une évaporation jusqu’à une concentration élevée, suivie d’un refroidissement conséquent et de la mise en forme du produit. D’autres procédés réalisent l’évaporation à un plus bas degré de concentration et complètent la séparation du nitrate d’ammonium solide par cristallisation ou, plus fréquemment, par évaporation continue dans un appareil spécialement conçu à cet effet. L’évaporation peut aussi se faire avec des évaporateurs à ruissellement en couches minces qui ont l’avantage de ne contenir que des poids très faibles de matière en cours de traitement.

Depuis 1965, de très efficaces évaporateurs opérant sous vide ont été utilisés dans plusieurs nouvelles usines. Ces unités modernes sont thermiquement efficientes et peuvent être contrôlées avec précision. La partie de l’unité où la solution est concentrée à plus de 99% en poids, est conçue pour retenir seulement de petites quantités de solution concentrée pour des questions de sécurité. Des précautions sont nécessaires pour éviter la contamination de la solution par des matières organiques ou tout autre déchet sensibilisant.

2.1.3 Contrôle de la taille des particules et des propriétés

Cette dernière étape de la production du nitrate d’ammonium est souvent la suite de la procédure d’évaporation. Le nitrate d’ammonium qui est un important constituant des fertilisants, doit être produit en grande quantité et répondre aux exigences du consommateur. Le nitrate d’ammonium étant hautement hygroscopique et mottant facilement, il est nécessaire que le solide produit soit protégé de l’humidité et traité pour minimiser le mottage. On ajoute pour ce faire des additifs qui stabilisent le grain et améliorent les propriétés de stockage. Ce point sera repris ultérieurement.
2.2 Description des procédés

Il existe une multitude de procédés : à pression réduite (utilisé par Chemico), à pression normale, sous pression ou encore avec préchauffage des réactifs. Les principaux sont décrits succinctement.

2.2.1 Procédés Uhde[14], SBA[5]

Ce procédé est mis en œuvre dans plus de 40 usines (Etats-Unis, Europe,…). Il a pour objectif d’assurer une fiabilité et une sécurité maximales. Dans les réacteurs Krupp Uhde, le nitrate d’ammonium est produit à des pressions normales et à de faibles températures de réaction selon la réaction exothermique :

\[\text{NH}_3 (g) + \text{HNO}_3 (l) \rightarrow \text{NH}_4\text{NO}_3 (l) \]

La réaction a lieu dans une solution de nitrate d’ammonium qui a déjà été formée et qui circule dans le réacteur par circulation naturelle ou forcée. La chaleur de réaction est stockée dans la solution circulante et peut être utilisée de différentes façons. Les températures sont constamment maintenues dans des limites assurant la sécurité et limitant la corrosion à un niveau acceptable.

Figure 2.3 Procédé Uhde

[Diagramme du procédé Uhde]
Ce procédé implique des dépenses d’investissement limitées. Seul le réacteur est légèrement pressurisé pour empêcher que la solution de nitrate d’ammonium ne soit à ébullition dans le mélangeur et dans le réacteur, ce qui évite pratiquement toutes les pertes d’ammoniac.

A la sortie du réacteur, la solution de nitrate d’ammonium est alimentée, via un orifice, vers l’évaporateur flash où une partie de l’eau est évaporée sous vide. L’acide nitrique concentré à 58% en poids est préchauffé. Il fournit une solution de nitrate d’ammonium pouvant atteindre jusqu’à 95% en poids. Pour faciliter le contrôle et pour assurer des conditions raisonnables de sécurité, la concentration de la solution est limitée à 92% en poids.

La teneur adéquate en nitrate d’ammonium pour les procédés qui suivent, comme la granulation ou le prilling, est obtenue par une reconcentration sous vide de la solution chauffée par de la vapeur. Krupp Uhde applique de préférence un système d’évaporation de type siphon thermique.

Les vapeurs de ce procédé sont employées pour le préchauffage de l’alimentation, l’excédent de vapeur est condensé. Néanmoins, la chaleur est utilisée moins efficacement que si la réaction était effectuée sous pression.

Les caractéristiques du procédé de neutralisation Krupp Uhde sont rassemblées ci-dessous :

<table>
<thead>
<tr>
<th>Général</th>
<th>Maintenance limitée, corrosion limitée due aux faibles températures.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recyclage</td>
<td>Environ 30% de la solution circulant dans le réacteur.</td>
</tr>
<tr>
<td>Stabilité du</td>
<td>Bonne circulation de la solution de nitrate d’ammonium pour obtenir des conditions opératoires uniformes.</td>
</tr>
<tr>
<td>procédé</td>
<td></td>
</tr>
<tr>
<td>Capacité</td>
<td>Production par ligne jusqu’à 2100 tonnes par jour.</td>
</tr>
<tr>
<td>Sécurité</td>
<td>Bonnes conditions de sécurité.</td>
</tr>
<tr>
<td>Effluents</td>
<td>Très faible contamination des effluents liquides, presqu’aucun effluent gazeux.</td>
</tr>
<tr>
<td>Quantités</td>
<td>Très grande efficacité de l’alimentation.</td>
</tr>
<tr>
<td>consommées</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2.1 Points forts de la neutralisation et de l’évaporation

③ : Ce terme anglais adopté dans le milieu industriel sera conservé. Il s’agit d’une cristallisation à partir de gouttelettes.
2.2.2 Procédé UCB

Dans ce procédé (figure 2.4), un échangeur de chaleur dans le réacteur sous pression utilise une partie de la chaleur de réaction pour produire de la vapeur.

Figure 2.4 Procédé UCB
a) réacteur ; b) épurateur/séparateur ; c) évaporateur à film tombant

L’ammoniac et l’acide nitrique à 52 - 63% en poids sont préchauffés et vaporisés à la base du réacteur. Les conditions adoptées dans le réacteur sont 4,5 bars de pression, 170 à 180°C et un pH acide (de 3 à 5). Le pH est conservé dans cette gamme en contrôlant les quantités relatives de réactifs. L’échangeur de chaleur refroidit le milieu réactionnel. Dans ces conditions, la réaction est stable dans le temps. La solution de nitrate d’ammonium à 75 - 80% quittant le réacteur est concentrée à 95% par évaporation.

La chaleur de réaction génère :

- une vapeur pure à une pression de 5,5 bars dans l’échangeur de chaleur. Elle peut être utilisée pour d’autres applications.

Le pH de 3 à 5 réduit les pertes d’azote dans la vapeur. Les conditions de travail sont choisies de sorte que l’excès de vapeur ne s’accumule pas.
2.2.3 Procédé Stamicarbon

Il s’agit d’un autre procédé sous pression (cf. figure 2.5). La réaction de neutralisation est menée dans un réacteur à boucle qui débouche sur un séparateur. La solution circule sans pompe grâce à la chaleur générée. L’acide nitrique (60% en masse), l’ammoniac préchauffé et une faible quantité d’acide sulfurique sont introduits tout en bas de la boucle. La réaction a lieu sous 4 bars et à 178°C. La solution de nitrate d’ammonium formée en sortie a une teneur de 78% en poids. La vapeur enlevée en haut du séparateur passe à travers un cyclone et est principalement utilisée pour concentrer à 95% la solution de nitrate d’ammonium dans un évaporateur sous vide. L’excès de vapeur est condensé et l’ammoniaque est recyclé vers le réacteur.

![Figure 2.5 Procédé Stamicarbon](image)

Figure 2.5 Procédé Stamicarbon

a) réacteur ; b) réservoir ; c) condenseur du surplus de vapeur ; d) épurateur d’ammoniac ; e) condenseur ; f) réservoir d’une solution diluée d’ammoniaque ; g) réservoir de condensat ; h) réfrigérant ; i) évaporateur ; k) séparateur ; l) garde hydraulique ; m) réservoir de stockage de la solution de nitrate d’ammonium à 95%

Dans un second évaporateur, la teneur peut être augmentée jusqu’à 98 - 99,5% en utilisant une vapeur froide. La température de la solution de nitrate d’ammonium est maintenue en dessous de 180°C pendant la réaction et l’évaporation.
2.2.4 Procédé NSM / Norsk Hydro Pressure

Le procédé Norsk Hydro (Canada, Europe,…) utilise l’ammoniac et l’acide nitrique préchauffés. La pression est comprise entre 4 et 5 bars et la gamme de température est comprise entre 170°C et 180°C. Ce sont des conditions correspondant à une solution de nitrate d’ammonium de 70 à 80% massique.

La circulation forcée et un siphon thermique permettent la circulation de la solution à travers le réacteur. Une partie de la chaleur de réaction vaporise l’eau dans le réacteur. Une autre partie de cette chaleur est utilisée pour générer une vapeur pure dans le bouilleur extérieur. Elle sert à concentrer la solution de nitrate d’ammonium jusqu’à 95%. Les pertes d’ammoniac sont faibles grâce au lavage des vapeurs du procédé par de l’acide nitrique, qui est additionné à la solution de nitrate d’ammonium circulant. Les teneurs à 99,5% sont obtenues en phase gazeuse avec un évaporateur spécial sous vide.

![Figure 2.6 Procédé NSM / Norsk Hydro Pressure](image)

Figure 2.6 Procédé NSM / Norsk Hydro Pressure

a) évaporateur de l’ammoniac (surchauffeur) ; b) préchauffeur de l’acide nitrique ;

c) chaudière ; d) réacteur ; e) réacteur - séparateur ; f) épurateur ; g) évaporateur flash ;

h) évaporateur ; i) séparateur ; k) condenseur ; l) expulsion ; m) réservoir

2.2.5 Procédé Stengel

Ce procédé possède plusieurs avantages : il nécessite moins d’équipements et permet la réalisation d’économies lors de l’étape d’évaporation grâce au préchauffage des réactifs avant l’étape de neutralisation. L’ammoniac chauffé et l’acide nitrique (à 58%) préchauffé sont alimentés en continu dans un réacteur tubulaire vertical (P=3,5 bars, T=240°C), où se forme le nitrate d’ammonium ainsi que la vapeur d’eau. Ce mélange traverse un cyclone qui sépare la matière fondu, contenant seulement 0,1 à 0,2% d’eau en bas du séparateur, des vapeurs en haut du séparateur. Dans le procédé Stengel originel, le nitrate d’ammonium fondu se solidifiait en coulant le long d’un tapis roulant réfrigérant. La feuille de composé solide ainsi formée était brisée en petits cubes.

La taille et les caractéristiques des particules pouvaient aussi être obtenues par prilling. Le procédé Stengel a été exploité dans deux usines aux États-Unis.
2.2.6 Procédé AZF Atofina

Le procédé de neutralisation développé notamment sur le site d’AZF à Toulouse (cf. figure 2.7) est sensiblement identique aux autres procédés. Le temps de séjour de la solution dans le réacteur (4) est faible : il n’excède pas une minute et demie. La solution issue du saturateur (5) est sous une pression de 3 bars comme la vapeur fabriquée dans cet appareil. Elle est détendue à l’aide d’une vanne automatique dans un échangeur de température travaillant sous vide.

La chaleur est apportée par la vapeur engendrée par la réaction de dissolution d’ammoniac avec formation d’ammoniaque ainsi que la chaleur de neutralisation de l’ammoniaque par l’acide nitrique. Le vide est assuré par un éjecteur à eau (8). Cette eau travaille en circuit fermé car son rejet dans la nature pourrait être polluant. Les condensats provenant de la vapeur souillée condensée dans l’échangeur évaporateur, sont recyclés vers l’atelier d’acide nitrique où ils servent à l’absorption des oxydes d’azote. Une partie de la vapeur générée par le neutralisant sert à chauffer les doubles enveloppes des collecteurs de transfert de la solution de nitrate d’ammonium concentrée.

![Figure 2.7 Procédé AZF Atofina](image)

1) préparation NH₃ ; 2) préchauffage HNO₃ ; 3) proportionomètre ; 4) réacteur ; 5) séparateur ; 6) concentrateur ; 7) séparateur sous vide ; 8) éjecteur trompe à vide ; 9) bac de pied sol de NH₄NO₃ à 96% ; 10) pompe vers la 2° concentration

La solution concentrée sous vide atteint une teneur de 96% en poids. Elle est partagée en deux : une partie va à la concentration finale avant le prilling, la deuxième au grossissement des grains.
2.2.7 Procédé Fauser

Le procédé Fauser est une technologie pionnière dans l'utilisation complète de la chaleur de réaction de l’ammoniac et de l’acide nitrique. Il a été d’une importance considérable en dehors des Etats-Unis.

L’étape de neutralisation est réalisée dans une chambre fermée à une pression supérieure à la pression atmosphérique afin d’éviter les pertes de matière. L’acide nitrique et l’ammoniac sont introduits en continu à l’intérieur d’une chambre contenant une liqueur neutralisée, dans laquelle la réaction a lieu avec un dégagement continu de chaleur.

Cette chambre est gardée sous une pression de quelques atmosphères qui est à tout instant considérablement plus grande que la tension de vapeur de la solution de nitrate d’ammonium. Les réactifs entrent par le bas de la chambre et la solution chaude de nitrate d’ammonium est déchargée continuellement au sommet, dans un récipient externe à pression atmosphérique. La chaleur de la solution et son contact avec le récipient interne entraînent l’ébullition et la concentration de la solution neutralisée. La solution hautement concentrée peut alors être retirée.

La vapeur provenant de la concentration du récipient externe est utilisée pour préchauffer les réactifs avant la réaction. La suppression des dernières fractions d’eau du nitrate d’ammonium est alors effectuée.

Dans tous ces procédés, le maintien du pH à la valeur désirée est très important. Lorsque les températures de réaction sont inférieures à 170°C, le pH est maintenu entre 2,4 et 4 pour minimiser les pertes d’azote. Aux faibles pressions, un pH plus élevé entre 4,6 et 5,4 est nécessaire compte tenu des températures plus élevées et du plus grand danger de décomposition.
2.3 Procédés de mise en forme des grains

Différents procédés, tels que la granulation (graining process), le floconnage (flaking process) et la pulvérisation (spraying process), ont été pratiqués pendant plusieurs années pour obtenir des particules ou des grains de nitrate d’ammonium satisfaisants pour le produit final. La méthode adoptée par la plupart des entreprises construites depuis la fin de la Seconde Guerre Mondiale est communément désignée sous le nom de « prilling ». Il existe cependant divers procédés de granulation. Seules les considérations commerciales influencent le choix de la forme du produit final, c’est pourquoi aucune comparaison entre les différents procédés de solidification et de mise en forme ne peut être effectuée.

2.3.1 Procédé discontinu de formation de grain, Batch Graining Process

Cette méthode était largement utilisée jusqu’à la seconde Guerre Mondiale. Depuis 1945, cependant, aucune usine ne l’a plus employée à cause de ses désavantages économiques et de ses possibles dangers.

Le procédé impliquait la neutralisation de l’acide nitrique aqueux avec de l’ammoniac (dans un batch*), l’évaporation de la solution neutralisée et la formation des grains pendant les dernières étapes de séchage. Le procédé de granulation nécessitait initialement un contrôle manuel qui devint techniquement infaisable lorsque la capacité des usines augmenta de 150 - 200 T/jour dans les années 40 à 500 T/jour dans les années 60, et à 1000 - 1200 T/jour dans les années 70. Le procédé de granulation a comme désavantage d’être peu adaptable aux conditions de sécurité désirées et de produire des grains plus petits que ceux recherchés pour une utilisation en tant que fertilisants.

2.3.2 Procédé de cristallisation sous vide, Vacuum Crystallization Process

Ce procédé a été développé par le « Tennessee Valley Authority » et une usine a été construite pour cette opération. La sécurité est le principal avantage de ce procédé, en comparaison avec le procédé de granulation et d’autres méthodes. Cependant, les petits cristaux obtenus n’ont pas été utilisables en tant qu’engrais, par rapport à des « prills » plus gros et plus homogènes. C’est pourquoi le « Tennessee Valley Authority » les a envoyés vers une granulation intermédiaire dans un tambour puis vers un granulateur.

2.3.3 Prilling

Le prilling est généralement préféré pour les grandes usines produisant plus de 1000 tonnes par jour, alors que les autres procédés sont adoptés pour de plus faibles productions (de l’ordre de 250 tonnes/jour). Dans le cas des procédés ICI et Uhde[14] (figures 2.8 et 2.9), ce sont des tours de prilling qui ont été choisies.

Le prilling est une étape au cours de laquelle la solution concentrée de nitrate d’ammonium (95% ou 99% en poids) est pulvérisée au sommet d’une large tour de vaporisation où les gouttelettes sont refroidies par un flux d’air ascendant. Les tours de vaporisation peuvent atteindre jusqu’à 70 m de hauteur. Elles sont en acier, en aluminium ou en béton armé... Les charpentes en acier et en béton armé doivent être recouvertes avec des peintures de protection. Du haut de la tour, la solution est dispersée en gouttelettes à travers des buses, des plateaux perforés ou des centrifugeuses perforées. De l’air froid est envoyé à
contre-courant pour dissiper la chaleur se développant lors de la cristallisation. Lorsque les gouttelettes tombent, elles se solidifient en granulée ronds qui sont récupérés en bas de la tour de prilling. Les perles ainsi obtenues sont alors refroidies (vers 110°C) et tamisées. La coupe granulométrique souhaitée est parfois enrobée d’un anti-mottant afin d’éviter la formation d’agrégats de particules et envoyée au stockage.

Figure 2.8 Procédé de prilling utilisé par ICI

Figure 2.9 Procédé de prilling utilisé par Uhde

La mise en forme du nitrate d’ammonium diffuse légèrement selon l’application souhaitée (explosifs ou engrais), ce qui implique certaines modifications dans le procédé de prilling.

- Dans le cas des explosifs, on pulvérise du nitrate d’ammonium fondu contenant encore de l’eau (de 3 à 5%). Il cristallise sous une forme fragile et poreuse, idéale pour réaliser des explosifs ANFO (cf. 4.2). On introduit un additif (tensioactif additionné de générateurs de cristallisation) avant le prilling pour rendre le nitrate d’ammonium suffisamment poreux.

- Dans le cas des engrais, les grains doivent être denses et non friables. Pour cela, la solution a été préalablement concentrée au moins à 99% en poids. Mais cette reconcentration n’est pas suffisante pour garantir une bonne tenue des grains. Il faut également ajouter un additif en très faible quantité. L’acide sulfurique ou le sulfate d’alumine sont des additifs possibles. L’ajout d’acide sulfurique permet la formation de sulfate d’ammonium solide ($T_{\text{fusion}} = 512^\circ\text{C}$) tout au long du procédé. Les additifs sous forme solide servent de germes internes au grain pour sa cristallisation. Le nitrate d’ammonium cristallise alors autour du germe de façon ordonnée, on obtient ainsi un prill plus dense (non poreux) qui a une bonne tenue mécanique. Le risque de mottage ou d’explosion est ainsi minimisé.

La tour de prilling ne permet guère de dépasser 1,5 à 2,5 mm de diamètre pour les prills ce qui est en dessous des spécifications attendues par les agriculteurs. Pour pallier à cet inconvénient, il existe un procédé de grossissement des grains, développé par AZF : les prills encore chauds sortant de la tour sont introduits dans un tambour tournant dans lequel ils sont arrosés avec une solution à environ 96% de nitrate d’ammonium fondu (issue directement du réacteur). Le produit se fige sur le prill. L’apport de nitrate d’ammonium humide ne gêne pas car la chaleur dégagée par la cristallisation et par le changement de forme allotropique est suffisante pour évaporer l’eau apportée par la solution.

Pour garantir une bonne adhérence des couches supplémentaires sur les prills, cette opération doit être effectuée à plus de 84°C (température de transformation allotropique* du système quadratique en système orthorhombique).

En sortant du tambour de grossissement, le produit chaud a une granulométrie comprise entre 2 et 3,5 mm, ce qui donne satisfaction aux agriculteurs. Le produit est ensuite criblé et les fines ou les croûtes qui auraient pu se former sur les parois du tambour, sont refondues et renvoyées à la pulvérisation. Le produit est ensuite refroidi de manière à abaisser sa température au-dessous du deuxième point de transformation allotropique qui est de 32°C. En effet, chaque transformation allotropique implique une réorganisation du système cristallin entraînant des ruptures entre les macles*. Un produit qui aura subi plusieurs transformations en passant plusieurs fois au dessus et au dessous de 32°C va se désagrégé.
2.3.4 Procédé de recyclage d’un sel

Développé par BASF en 1928 pour la granulation du sel de nitrate d’ammonium calcium, ce procédé s’applique aussi au recyclage de sel de nitrate d’ammonium. Il produit des granulés de 2 à 4 mm. Il peut être modifié en mettant un tambour après la vis à palette. On améliore la granulation en effectuant un séchage ou un refroidissement dans un lit fluidisé ou en soumettant le granulé à un écran chaud ou froid.

Figure 2.10 Procédé de recyclage du sel
a) vis de granulation ; b) tambour de séchage ; c) tambour de refroidissement ;
d) tamis ; e) traitement préable
2.3.5 Procédés par granulation

- granulation avec granulateur à pâles rotatives (cf. figure 2.12)

Il a été développé par Fisons Nitro-Top et Krupp Uhde\cite{14}. Le cœur de ce procédé de granulation est un granulateur à pâles rotatives, c'est-à-dire un mélangeur horizontal et un dispositif d'agglomération basé sur une cuvette en forme de U avec un double brasseur. En raison de la vitesse des pagaies, les granulés sont fluidisés dans la partie supérieure du granulateur (cf. figure 2.11).

![Figure 2.11 Granulateur à pales rotatives](image)

Les matières recyclées (les fines, les granulés surdimensionnés et la poussière des cyclones) et le nitrate d'ammonium fondu se combinent pour former des granulés par agglomération et par addition de couches successives. Les granulés chauds et humides quittant le granulateur tombent dans un tambour tournant, où ils sont séchés au moyen d'air chaud. Ils sont ensuite tamisés puis refroidis par un lit fluidisé à l'aide d'air conditionné à une température qui permet le stockage du produit.

L'excès d'air issu du lit fluidisé est employé pour le séchage du produit, réduisant ainsi considérablement la quantité d'air qui doit être traitée et la consommation d'énergie du procédé de séchage.

L'air issu du tambour passe dans des cyclones pour éliminer les poussières. Les fines, les granulés surdimensionnés et la poussière des cyclones sont envoyés au granulateur pour être recyclés. On passe ensuite tout l'air dans un épurateur où l'ammoniac est éliminé par réaction avec l'acide nitrique.

Les effluents liquides issus de l'épurateur sont acheminés au système d'évaporation. Par conséquent, aucun effluent liquide n'est produit lors d'une production normale.
Les caractéristiques du procédé de neutralisation sont rassemblées ci-dessous:

<table>
<thead>
<tr>
<th>Recyclage</th>
<th>Environ 60%.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilité du procédé</td>
<td>Compensation des fluctuations par le recyclage.</td>
</tr>
<tr>
<td>Diversité</td>
<td>Production possible de plusieurs produits finis (nitrate d’ammonium, nitrate d’ammonium calcium, sulfonitraté d’ammonium, nitrate de calcium).</td>
</tr>
<tr>
<td>Capacité</td>
<td>Jusqu’à 1800 tonnes par jour et par ligne de production.</td>
</tr>
<tr>
<td>Sécurité</td>
<td>Manipulation des solutions de nitrate d’ammonium à relativement basses températures (145°C-160°C) pour une teneur massique de 94-97%.</td>
</tr>
<tr>
<td>Effluents</td>
<td>Présence d’épurateurs pour le respect des normes environnementales.</td>
</tr>
<tr>
<td>Quantités consommées</td>
<td>Faibles quantités d’air et de vapeur requises et réutilisation de celles-ci.</td>
</tr>
</tbody>
</table>

Tableau 2.2 Points forts de la neutralisation et de l’évaporation
granulation sur un lit solide (cf. figure 2.13)

Ce procédé a été développé par TVA et Norsk Hydro (Norvège). Sur la pente d’un plateau rotatif de type granulateur, le sel fondu de nitrate d’ammonium à 99,5% en poids est vaporisé sur un lit solide en mouvement et se solidifie sur les particules froides. Les granulés grossissants sont classés sur le plateau rotatif. Lorsque la taille requise est atteinte, ils basculent à l’extérieur. La taille du grain peut varier en changeant les paramètres de l’opération :

- diamètre des grains pour un engrais normal : 4 à 6 mm,
- diamètre des grains pour engrais forestiers : 7 à 11 mm.

L’utilisation d’engrais forestier est rare et limitée à la Finlande, la Suède et au Canada. La taille des grains est suffisamment grosse pour permettre la dispersion des grains à travers les feuillages.

Figure 2.13 Procédé de granulation par TVA Norsk Hydro

a) filtre à poussière ; b) tambour granulateur ; c) cyclone ; d) tambour de polissage ;
e) broyeur ; f) réfrigérant ; g) tamis

Le nitrate d’ammonium peut être aussi mis en granulé dans un tambour granulateur de 3,5 à 4,5 m de diamètre et de 14 à 18 m en longueur. Ce tambour est connu sous le terme anglais de « spherodizer ». Dans la production de granulés de nitrate d’ammonium, l’air froid passe à travers le tambour granulateur. La solution concentrée de nitrate d’ammonium (99,5%) est vaporisée sur une cascade de granulés tombant selon une trajectoire déterminée. Les granulés sont composés de couches successives (type peau d’oignon) afin de produire des billes d’engrais sphériques. Ensuite, les granulés sont refroidis et enrobés avec un stabilisant. Ils ont une plus grande résistance à la dégradation mécanique que les billes sortant du prilling et sont par conséquent moins sujets à la détérioration lors du stockage, du transport et des applications.
2.4 Stabilisation du grain et traitement de surface

Le caractère hygroscopique et le point de transition cristallographique (32°C) affectent défavorablement la possibilité de stockage du nitrate d’ammonium. La température de 32°C peut être souvent dépassée, particulièrement pendant les transports ainsi que lors du stockage dans les régions chaudes. Les granulés perdent leur tenue et se désagrègent en poussières. Certaines réactions parasites en phase solide peuvent être inhibées en réduisant la teneur en humidité et en ajoutant des additifs qui agissent comme des stabilisants internes. Les additifs sont introduits sous forme fondue avant l’étape de vaporisation.

Ces additifs peuvent être :
- du sulfate de calcium CaSO$_4$ sous forme anhydre,
- H$_3$BO$_3$ + (NH$_4$)$_2$HPO$_4$ +(NH$_4$)$_2$SO$_4$,
- du polyphosphate de potassium et d’ammonium,
- du gel de silice,
- du oxydes métalliques,
- du kaolin,
- du nitrate de magnésium Mg(NO$_3$)$_2$,
- du sulfate d’aluminium Al$_2$(SO$_4$)$_3$.

Le nitrate de magnésium et le sulfate d’aluminium sont d’importants stabilisants. En général, les stabilisants empêchent la réaction entre le nitrate d’ammonium et le carbonate de calcium, qui forme le nitrate de calcium très hygroscopique.

Le traitement final de surface empêche les granulés de motter pendant le stockage. Les substances minérales utilisées lors des premiers essais de mise en poudre pour séparer mécaniquement les grains ont été remplacées par un traitement avec des surfactants organiques tels que les alkylarylsulfonates anioniques ou les amines grasses cationiques. Les amines grasses, appliquées sous forme de sel ou de solution d’huile, forment une couche protectrice grâce à des phénomènes de répulsions chimique et électrostatique entre les grains. La propriété anti-mottage est accentuée par l’addition de substances organiques non ioniques, comme le polyéthylène, la cire ou la paraffine.

Le procédé d’application est multi-étapes :
- La 1ière étape consiste à enrober les granulés par une couche uniforme et compacte d’alkylamine C12-C18 fondue.
- La 2ième étape consiste à refroidir les granulés pour obtenir l’amine sous forme solide.
- L’étape finale consiste à enrober le granulé d’une mince couche d’huile minérale.

L’addition de certains composés organiques sur le nitrate d’ammonium doit être totalement maîtrisée car le risque de former un explosif n’est pas négligeable.
2.5 Conversion du nitrate de calcium tétrahydraté, procédé BASF

Pour produire du nitrate d’ammonium, on peut également envisager le recyclage du nitrate de calcium tétrahydraté. En effet, la production d’engrais de nitrophosphates par la digestion de phosphate avec l’acide nitrique dans le procédé Odda engendre comme co-produit du nitrate d’ammonium tétrahydraté en quantité considérable. Dans ce procédé, le nitrate de calcium tétrahydraté est traité avec de l’ammoniac et du dioxyde de carbone pour former du nitrate d’ammonium et du carbonate de calcium.

\[
\text{Ca(NO}_3\text{)}_2 , 4 \text{H}_2\text{O (s)} + 2 \text{NH}_3 (g) + \text{CO}_2 (g) \rightarrow 2 \text{NH}_4\text{NO}_3 (\text{aq}) + \text{CaCO}_3 (s) + 3 \text{H}_2\text{O (g)}
\]

\[\Delta H = -126 \text{ kJ/mol}\]

La chaleur résultante est suffisante pour évaporer toute l’eau. Cependant, une opération directe n’est pas possible en raison de l’équilibre défavorable aux températures élevées. Dans le procédé BASF (cf. figure 2.14), la chaleur résultante de la réaction de nitrate de calcium avec du carbonate d’ammonium est réutilisée. L’ammoniac et le dioxyde de carbone sont dissous dans une solution de nitrate d’ammonium et la chaleur dégagée est évacuée. Le nitrate de calcium tétrahydraté est aussi dissous dans la solution de nitrate d’ammonium. Les deux solutions réagissent ensuite à 50°C. La chaleur produite est minimale.

La taille des grains du carbonate de calcium précipité peut être influencée par la manière d’introduire les réactifs. Après réaction, la solution de nitrate d’ammonium à 65% en poids est séparée du carbonate de calcium sur un filtre et concentrée par évaporation. Le carbonate de calcium contient une faible quantité de composés azotés et phosphatés. Il est utilisé pour la
plus grande partie pour la production de nitrate d’ammonium-calcium. Si le nitrate de calcium est convenablement préparé avant la réaction, du carbonate de calcium très pur peut être produit. Pour la conversion directe du nitrate de calcium et l’évacuation simultanée de la chaleur de réaction, Hoechst a développé un réacteur vertical spécial. Le dioxyde de carbone gazeux est introduit par le bas et l’ammoniac est introduit dans trois zones, chacune refroidie avec de l’eau.
3. Réactivité

3.1 Propriétés d’oxydo-réduction

Le nitrate d’ammonium est un puissant agent oxydant par sa fraction nitratée. La molécule de nitrate d’ammonium contient :

- un ion nitrate oxydant où l’azote est à son degré d’oxydation maximum (+V)
- un ion ammonium réducteur où l’azote est à son degré d’oxydation minimum (-III)

La décomposition du nitrate d’ammonium vers 210°C donne principalement du protoxyde d’azote (gaz hilarant) où l’azote possède un degré d’oxydation (+I).
La décomposition explosive engendre, à partir d’azote et d’oxygène, du monoxyde d’azote en faible quantité, où l’azote est à son degré d’oxydation (+II). Le monoxyde d’azote s’oxyde à l’air en dioxyde d’azote et en vapeurs nitreuses de couleur rousse.

Ces réactions d’oxydo-réduction étant rapides et irréversibles, le nitrate d’ammonium est un produit utilisable comme explosif.

D’après P. Pascal[6], le nitrate d’ammonium est un puissant agent oxydant puisque le sel fondu oxyde de nombreux métaux. Le zinc s’y dissout aussi vite que dans un acide ; il en est de même pour le plomb et, à un moindre degré, pour l’antimoine, le bismuth, le nickel, le cuivre, le cadmium. Il devrait attaquer les métaux dont le potentiel standard est inférieur à celui de l’hydrogène - au moins en milieu ammoniac liquide. Cependant le fer, l’arsenic, l’étain, le mercure et l’aluminium résistent à son action d’après les recherches d’Emmet, Audrieth et Schmidt, Hodgkinson et Coote[6]. L’addition de chlorures facilite la réaction et permet même l’attaque de presque tous les métaux.

L’attaque d’un métal donne généralement lieu à une production d’azote, d’ammoniac et d’eau, comme le montre la réaction sur du cuivre :

\[3 \text{NH}_4\text{NO}_3 + \text{Cu} \rightarrow \text{Cu(NO}_3)_2 + 2 \text{NH}_3 + \text{N}_2 + 3 \text{H}_2\text{O} \]

Celle d’un oxyde métallique libère surtout de l’ammoniaque et de l’eau, un carbonate métallique y ajouteraient de l’anhydride carbonique.

Les métalloïdes réagissent en général mais en s’oxydant seulement ; il y a explosion par contact du sel fondu et du phosphore ou du carbone divisé, alors que le soufre fond simplement en présence de nitrate d’ammonium lors d’une montée lente en température. Cependant, les résultats obtenus avec le carbone divisé restent très aléatoires.

De même, la solution de nitrate d’ammonium attaque la plupart des métaux, en particulier à cause de l’hydrolyse. Tout revient, en somme, à une corrosion par l’acide nitrique, donnant lieu à une production d’azote grâce aux ions ammonium. Une partie du nitrate est réduit à l’état de nitrite, d’hyponitrite, ou même d’ammoniaque. Cette attaque est une des complications de l’industrie du nitrate d’ammonium, qui doit employer des métaux spéciaux (ferro-silicium
jusqu’aux années 50 et alliage au nickel-chrome actuellement) pour l’évaporation des solutions (Ramann, Morin, Hodgkinson et Coote)\[6\].

Quelques potentiels d’oxydation du nitrate, mesurée par l’électrode standard à l’hydrogène* à 25°C et 101,325 kPa, sont rassemblées ci-dessous\[15\] :

\[
\begin{align*}
\text{NO}_3^- + 3 \text{H}^+ + 2 \text{e}^- & \rightarrow \text{HNO}_2 + \text{H}_2\text{O} \quad E^o = 0,934 \text{ V} \\
\text{NO}_3^- + 4 \text{H}^+ + 3 \text{e}^- & \rightarrow \text{NO} + 2 \text{H}_2\text{O} \quad E^o = 0,957 \text{ V} \\
2 \text{NO}_3^- + 4 \text{H}^+ + 2 \text{e}^- & \rightarrow \text{N}_2\text{O}_4 + 2 \text{H}_2\text{O} \quad E^o = 0,803 \text{ V} \\
\text{NO}_3^- + \text{H}_2\text{O} + 2 \text{e}^- & \rightarrow \text{NO}_2^- + 2 \text{OH}^- \quad E^o = 0,01 \text{ V} \\
2 \text{NO}_3^- + 2 \text{H}_2\text{O} + 2 \text{e}^- & \rightarrow \text{N}_2\text{O}_4 + 4 \text{OH}^- \quad E^o = -0,85 \text{ V}
\end{align*}
\]

3.2 Décomposition du nitrate d’ammonium\[5,16\]

A température et pression ordinaires, ainsi que dans un large domaine autour de celles-ci, le nitrate d’ammonium reste inaltérable dans le temps pendant son stockage. C’est donc un corps chimiquement stable dans ces conditions. A des températures légèrement supérieures à son point de fusion, il subit certaines réactions étudiées par la suite. Les diverses réactions du nitrate d’ammonium sous l’effet de la chaleur ont été signalées dès 1869 ; certaines peuvent prendre une allure explosive, mais ce composé n’est qu’un explosif peu sensible.

Des réactions de décomposition du nitrate d’ammonium par la chaleur sont présentées ci-après:

- **Vaporisation du nitrate d’ammonium**

\[1\] \text{NH}_4\text{NO}_3 (s, IV) \xrightarrow{\Delta} \text{HNO}_3 (g) + \text{NH}_3 (g) \quad \Delta H = 176 \text{ kJ.mol}^{-1}

Le nitrate d’ammonium chauffé se vaporise, avant sa température de fusion (\(T_{\text{fusion}} = 169,6°C\)), en donnant une vapeur qui est dissociée en acide nitrique et en ammoniac. La vaporisation devient très importante vers 300°C. Cette réaction est fortement endothermique. De plus, elle est réversible : les vapeurs d’acide et d’ammoniac peuvent se recombiner pour former, sur une paroi froide, des cristaux de nitrate d’ammonium.

- **Décomposition en eau et en hémioxyde d’azote (ou protoxyde d’azote)**

Aux températures de l’ordre de 185°C, une autre réaction devient possible :

\[2\] \text{NH}_4\text{NO}_3 \rightarrow \text{N}_2\text{O} (g) + 2 \text{H}_2\text{O} (g)

Cette réaction représente l’équation bilan d’oxydo-réduction entre les deux couples \text{NH}_4^+/\text{N}_2\text{O} et \text{N}_2\text{O}/\text{NO}_3^-\text{. Elle est exothermique ; la chaleur de réaction à pression constante est de :}

- -36 kJ.mol\(^{-1}\) à 18°C à partir du sel solide
- -56 kJ.mol\(^{-1}\) à 250°C à partir du sel fondu

Elle est utilisée pour la synthèse du protoxyde d’azote.

La décomposition du nitrate d’ammonium sous des températures élevées ou sous un choc extrême peut avoir lieu de deux manières différentes :
- la première est la réaction [2] qui peut être contrôlée, même si elle est rapide,
- la seconde [3], qui démarre à 300°C, se déroule avec une grande rapidité et une grande violence lorsque le nitrate d’ammonium détone, c’est-à-dire lorsqu’il est utilisé comme composé entrant dans la composition des mélanges explosifs.

\[
\text{[3]} \quad 2 \text{NH}_4\text{NO}_3 \rightarrow 2 \text{N}_2 + 4 \text{H}_2\text{O} + \text{O}_2
\]

➢ Autres réactions de décomposition par la chaleur

La réaction traduisant la présence d’azote et d’oxygène dans les gaz formés est la suivante :

\[
\begin{align*}
4 \text{HNO}_3 & \leftrightarrow 4 \text{NO}_2 + \text{O}_2 + 2 \text{H}_2\text{O} \\
6 \text{NO}_2 + 8 \text{NH}_3 & \rightarrow 7 \text{N}_2 + 12 \text{H}_2\text{O}
\end{align*}
\]

soit :
\[
\text{[4]} \quad 16 \text{NH}_3 + 12 \text{HNO}_3 \rightarrow 30 \text{H}_2\text{O} + 14 \text{N}_2 + 3 \text{O}_2
\]

Cette réaction provient de l’oxydation de l’ammoniac par le dioxyde d’azote (issu de la dissociation de la vapeur d’acide nitrique). Elle est très exothermique et dégage 289 kJ par mole de HNO₃ réagissante.

Il existe d’autres réactions secondaires donnant de l’oxyde nitrique NO et du dioxyde d’azote NO₂. Elles interviennent en phase gazeuse et sont observées de manière significative lorsque le nitrate d’ammonium est chauffé au-delà de 280°C en vase clos, donc lorsque la pression peut s’élérer notablement au-dessus de la pression atmosphérique.

Il est également possible d’observer, après chauffage prolongé en vase clos du nitrate d’ammonium et des produits qui s’en dégagent, un mélange gazeux renfermant de l’ammoniac, gaz combustible*, et des oxydes d’azotes, gaz comburants *. Ce mélange est, par conséquent, susceptible d’exploser.

➢ Réactions catalysées

- Par le noir de platine*

\[
\text{[5]} \quad 5 \text{NH}_4\text{NO}_3 \rightarrow 9 \text{H}_2\text{O} + 4 \text{N}_2 + 2 \text{HNO}_3
\]

Cette décomposition du nitrate d’ammonium en solution aqueuse décimolaire est catalysée par le noir de platine et se déroule lentement à température ordinaire ou en 1 heure vers 100°C. Elle a été étudiée en 1945 par P. Montagne[5].
• Par des dérivés chlorés

La réaction [5] est également catalysée par des dérivés chlorés à des températures élevées et sa chaleur de réaction est de 139 kJ par mole de nitrate d’ammonium.

La réaction de décomposition déclenchée par les chlorures dégage principalement de l’azote. Elle est d’autant plus violente en présence de faibles quantités d’acide nitrique (entre 0,1 et 0,2% en masse). Par contre, en ajoutant de l’ammoniac dans le nitrate fondu en décomposition, la réaction est aussitôt modérée.

L’action très sensible des dérivés chlorés peut être mise en évidence avec un taux de seulement 0,02% en chlore.

Les auteurs ayant étudié cette action des chlorures sur la décomposition du nitrate d’ammonium, en particulier Braconier, Delsemme et Keenan[5], ont tiré les conclusions suivantes :
- cette décomposition se produit à une température inférieure à celle du nitrate pur, de 50 à 80°C environ
- elle est plus rapide que celle du nitrate pur
- elle ne se déclenche qu’après une certaine période d’induction qui devient nulle en présence d’importante quantité d’acide nitrique.

La présence de chlorure d’ammonium finit par déclencher, même à 175°C, une décomposition tumultueuse.

En présence d’acide (nitrique ou autre) et de chlorures, le nitrate d’ammonium en solution concentrée peut se décomposer, même en dessous de 100°C, en subissant la réaction [2] vue précédemment :

\[\text{[2]} \quad \text{NH}_4\text{NO}_3 \quad \rightarrow \quad \text{N}_2\text{O} \ (g) + 2 \text{H}_2\text{O} \ (g) \]

Cette réaction donne aussi des traces de NO, Cl₂ et NOCl₂.

Les bromures et les iodures ont une action semblable à celle des chlorures mais les fluorures sont sans effet sur la décomposition du nitrate d’ammonium.

• Par d’autres catalyseurs

Certains composés tels que des acides et des corps pulvérulents comme la poudre de verre, le graphite, les oxydes métalliques ou encore la mousse de platine ont une influence accélératrice sur la décomposition du nitrate d’ammonium par la chaleur.

D’autres corps peuvent également avoir une action catalytique souvent aussi intense que celle du chlore. Ceci est le cas pour les composés du cuivre, du manganèse, du cobalt et du chrome que G. Guiochon a étudiés en 1960[5]. Ainsi, il a observé que l’addition de nitrate chromique pouvait déclencher dès 130°C une décomposition du nitrate d’ammonium rapide sans période d’induction.

une réduction de la vapeur d’acide nitrique par l’ammoniaque, d’abord en dioxyde d’azote puis en monoxyde d’azote.

Fragino[5] a étudié la décomposition du nitrate d’ammonium additionné de 5% d’un mélange équimolaire d’un chlorure manganeux et de chromat cuivrique. Celle-ci a eu lieu en 10 minutes à 200°C.

Par ajout de 5% de chromate de potassium, Glaskova[5] a obtenu un mélange pouvant déflagrer à pression atmosphérique, alors qu’avec un mélange à 5% en chlorure de sodium, la déflagration n’a lieu qu’à des pressions au moins égales à 10 atmosphères.

Outre les réactions de décomposition thermique, le nitrate d’ammonium peut réagir en présence de divers composés :

- **Réaction avec le formol**

 En chauffant du formol avec du nitrate d’ammonium et en évaporant la solution, il reste un résidu constitué de nitrate d’ammonium et de nitrate de méthylammonium (mélange explosif). La formation d’hexogène (cyclotriméthylène trinitramine ou cyclorite), explosif, est également possible selon la réaction :

 ![Equation](image)

- **Réaction avec la cellulose ou l’amidon**

 Lorsqu’il est chaud (vers 80-100°C), le nitrate d’ammonium perd une faible quantité d’ammoniac et s’acidifie, ce qui explique certains de ses comportements à des températures inférieures à 100°C. C’est ainsi que Findlay et Rosebourne[5] constatèrent la réaction du nitrate d’ammonium vers 100°C en présence de cellulose ou d’amidon avec dégagement de CO₂, H₂O et N₂. Une addition de 0,5 à 1% d’urée, qui neutralise l’acide nitrique, empêche cette réaction.

3.3 Propriétés explosives du nitrate d’ammonium [5]

D’après L. Médard[5], « il importe de faire une distinction entre le nitrate d’ammonium pur et le nitrate d’ammonium impur car leurs propriétés explosives peuvent être très différentes, même pour des teneurs très faibles de certaines impuretés (...). D’un point de vue théorique, et d’après la définition des explosifs (cf. annexe), le nitrate d’ammonium pur est un corps explosif, car il est susceptible d’éprouver des réactions exothermiques rapides avec émission d’une grande quantité de gaz chaud. Ce caractère explosif du nitrate d’ammonium a été étudié vers 1870 par Berthelot qui considérait que l’explosion franche de ce corps a lieu selon l’équation :

![Equation](image)

D’après cette équation, l’énergie libérée par l’explosion serait 1580 kJ/kg, alors que les explosifs usuels fournissent entre 2500 et 6000 kJ/kg. Le nitrate d’ammonium, en tant qu’explosif, n’a qu’une médiocre puissance (...). »

Quand la détonation du nitrate d’ammonium se produit, des fumées rousses peuvent être observées, attestant la présence de dioxyde d’azote. Ceci laisse supposer que la décomposition du nitrate a lieu, pour une part, selon l’équation :
Cette réaction libère à volume constant 1360 kJ/kg.
Une autre réaction peut intervenir, mais seulement pour une faible part, dans la détonation :

\[\text{NH}_4\text{NO}_3(\text{s}) \rightarrow \frac{1}{2} \text{N}_2(\text{g}) + \frac{3}{4} \text{N}_2(\text{g}) + 2 \text{H}_2\text{O}(\text{g}) \]

Cette réaction libère très peu d’énergie : 450 kJ/kg.

➢ Sensibilité au choc mécanique

Le nitrate d’ammonium et les ammonitrates sont insensibles aux frottements et aux chocs mécaniques les plus violents. Par exemple, lorsque les ammonitrates prennent en masse à cause de leur hygroscopicité, les tas formés sont fragmentés à l’aide d’un marteau piqueur.

L’explosion, lorsqu’elle survient, ne concerne que la matière directement soumise à l’impact et ne se transmet pas, à l’air libre, au reste du nitrate d’ammonium.

➢ Sensibilité à la détonation

La sensibilité du nitrate d’ammonium et des ammonitrates à l’amorce par un explosif dépend des facteurs présentés ci-après.
- la température : la sensibilité augmente avec la température
- la densité du produit : la sensibilité diminue quand la densité augmente
- la forme physique
 Pour étudier l’influence de la densité et de la forme physique du nitrate d’ammonium, Aufschläger a réalisé des tests en amorçant 10 g de nitrate avec un détonateur ordinaire et a obtenu les résultats suivants :

<table>
<thead>
<tr>
<th>Nature du produit</th>
<th>Densité (g/cm3)</th>
<th>Evasement (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cristaux à faciès aciculaire de 1 à 1,5 cm de long</td>
<td>0,5</td>
<td>215</td>
</tr>
<tr>
<td>Cristaux rhombiques de 3 cm de long et 5 mm d’épaisseur</td>
<td>0,35</td>
<td>135</td>
</tr>
<tr>
<td>Nitrate broyé (tamis 144 mailles / cm2)</td>
<td>0,69</td>
<td>200</td>
</tr>
<tr>
<td>Nitrate fin (tamis 2000 mailles / cm2)</td>
<td>0,83</td>
<td>189</td>
</tr>
<tr>
<td>Nitrate fondu et concassé en gros morceaux</td>
<td>-</td>
<td>15</td>
</tr>
</tbody>
</table>

Tableau 3.1 Evasement en fonction de la forme physique du nitrate d’ammonium

- la granulométrie* du produit : la sensibilité est plus grande pour des petits granulés
- la pureté chimique du produit :
 • le nitrate d’ammonium impur mélangé à des réducteurs divers (hydrocarbures, sucres…) peut exploser spontanément si une masse importante est fondue après avoir été prise dans un incendie violent,
 • la concentration en nitrate d’ammonium de l’ammonitrate influe sur la sensibilité
- le degré de confinement du produit exposé à la détonation.
Remarques :

i. le nitrate chaud, sous confinement, est plus sensible à l’action de l’amorçage que le nitrate à température ordinaire (au-dessus de 140°C : détonation complète).

ii. la détonation du nitrate d’ammonium par un autre explosif ne peut se produire qu’en présence d’une masse importante de ce dernier.

➢ Explosion du nitrate d’ammonium par chauffage

L’explosion du nitrate d’ammonium pur, sous élévation de température ou sous l’action d’un choc, dépend entièrement des conditions de confinement.

D’après une étude de Feick et Hainer[5], une décomposition très rapide du nitrate d’ammonium pur ne pourrait avoir lieu que dans des conditions où la pression peut atteindre une cinquantaine de bars.

Diverses expériences ont été menées afin de montrer l’importance du confinement :

- Munroe[5], en chauffant des masses d’environ 5 kg de nitrate à température élevée, dans un récipient métallique ouvert à l’air, n’a obtenu aucune explosion bien que le nitrate ait été porté à 375°C. D’autre part, l’introduction du produit dans un tube d’acier fermé aux deux extrémités, tout en gardant les conditions de chauffage de l’expérience précédente, entraîna une explosion avec rupture du tube.

Lorsque l’expérience est conduite en vase clos ou sous très fort confinement, il est possible que ce soit la phase gazeuse qui explose la première (réactions entre ammoniac et oxydes d’azote très exothermiques et explosives à température suffisamment élevée), amorçant celle de la phase liquide.

➢ Sensibilisation du nitrate d’ammonium par des corps combustibles

Les propriétés explosives faibles du nitrate d’ammonium sont considérablement augmentées quand il est mélangé à des matières combustibles finement réparties (cf. § 4.2).

L’addition d’un assez faible pourcentage (1 ou 2%) d’un corps combustible au nitrate d’ammonium suffit à transformer celui-ci, très peu sensible à l’état pur, en un mélange pouvant exploser par une action excitatrice modérée.

Outre les hydrocarbures, les autres matières combustibles pouvant sensibiliser le nitrate d’ammonium sont :

- le soufre qui se désagrège facilement en donnant une poussière très fine, et qui est un bon sensibilisant

- les métaux en poudre comme l’aluminium et le zinc

- des sels ammoniacaux non-explosifs, tels que le chlorure et le sulfate d’ammonium, qui ont, entre certaines limites de concentration, une action sensibilisante non négligeable grâce à l’hydrogène qu’ils renferment

- des agents surfactants cationiques tels que le laurylsulfate de sodium ou le dodécylbenzènesulfonate de sodium qui, à hauteur de 0,03 à 0,05%, ont une action sensibilisante comparable à celle d’un ajout de 1 à 1,5% de mazout

- le caoutchouc naturel finement divisé et enflammé qui a déjà été cause d’accidents.
3.4 Tableau de réactivité vis-à-vis de certains éléments

Le tableau 3.2 ci-dessous rend compte des réactions entre le nitrate d’ammonium et divers composés :

<table>
<thead>
<tr>
<th>Composé</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>Violente explosion due à la décomposition d’un hyponitrite formé selon la réaction : $\text{NH}_4\text{NO}_3 \xrightarrow{\text{Na}} \text{Na}_2\text{N}_2\text{O}_2$ (inflammabilité spontanée du sodium avec l’acide nitrique)</td>
</tr>
<tr>
<td>Aluminium en poudre</td>
<td>Explosion en mélange avec NH_4NO_3</td>
</tr>
<tr>
<td>Phosphore rouge*</td>
<td>Inflammabilité avec NH_4NO_3 à l’état fondu</td>
</tr>
<tr>
<td></td>
<td>Explosion au choc avec NH_4NO_3 à l’état solide</td>
</tr>
<tr>
<td>Chrome</td>
<td>Chauffage à 200°C : explosion</td>
</tr>
<tr>
<td>Magnésium</td>
<td>Chauffage à 200°C : réaction violente, voire explosion</td>
</tr>
<tr>
<td></td>
<td>violentes explosions en mélange avec NH_4NO_3 à l’état fondu</td>
</tr>
<tr>
<td></td>
<td>(avec l’acide nitrique : déflagration)</td>
</tr>
<tr>
<td>Mélanges de fer</td>
<td>Inflammabilité avec à peu près tous les oxydants, dont NH_4NO_3</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Chauffage vers 200°C : réaction violente, voire explosion</td>
</tr>
<tr>
<td>Nickel</td>
<td>Chauffage vers 200°C : réaction violente, voire explosion</td>
</tr>
<tr>
<td>Cuivre en poudre</td>
<td>Chauffage vers 200°C : réaction violente, voire explosion avec NH_4NO_3 à l’état fondu</td>
</tr>
<tr>
<td>Zinc</td>
<td>À T_{amb} : réaction violente, surtout en présence de chlorure d’ammonium</td>
</tr>
<tr>
<td></td>
<td>Remarque :</td>
</tr>
<tr>
<td></td>
<td>- si Zn^{2+} et NO_3^- très peu mélangés, 1 à 2 gouttes d’eau déclenchent la réaction avec dégagement intense de fumées blanches d’oxyde de zinc</td>
</tr>
<tr>
<td></td>
<td>- si Zn^{2+} et NO_3^- bien mélangés, bref dégagement de fumées puis inflammation et combustion vigoureuse de Zn</td>
</tr>
<tr>
<td></td>
<td>Chauffage à 200°C : réaction pouvant devenir explosive</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Réaction violente à explosive en mélange avec NH_4NO_3 à l’état fondu</td>
</tr>
<tr>
<td>Plomb</td>
<td>Réaction violente, parfois explosive, dans le NH_4NO_3 à l’état fondu à $T < 200^\circ C$</td>
</tr>
<tr>
<td>Bismuth</td>
<td>Réaction violente, parfois explosive, dans le NH_4NO_3 à l’état fondu à $T < 200^\circ C$</td>
</tr>
<tr>
<td>Mélange : 27% de formamide, 51% de nitrate de calcium, 10% H_2O, 12% NH_4NO_3</td>
<td>Pouvoir brisant du mélange augmenté par ajout de poudre d’aluminium</td>
</tr>
</tbody>
</table>

Tableau 3.2 Réactivité du nitrate d’ammonium vis-à-vis de certains éléments
Le nitrate d’ammonium est incompatible avec les composés suivants[19] : antimoine, plomb, manganèse, cuivre, huiles, charbon, matières organiques, acide acétique, sulfate d’ammonium, dérivés chlorés, sulfate de potassium, hypochlorite de sodium, perchlorate de sodium.
4. Utilisations

Le statut économique du nitrate d’ammonium a évolué depuis la Première Guerre Mondiale. Auparavant, il était principalement destiné à entrer dans la composition des explosifs commerciaux et des munitions. A l’heure actuelle, la plus grande proportion de nitrate d’ammonium produit est utilisée en tant que fertilisant. Il est également employé comme explosif pour les travaux de génie civil (travaux publics, construction), ou dans d’autres domaines de l’industrie, en particulier dans les carrières et les mines. Les ammonitrates sont utilisés par les fabricants de boosters de fusées pour la conception des propulsifs à base d’asphalte fondu. Une application mineure mais toutefois importante réside dans la fabrication du protoxyde d’azote.

4.1 Engrais

4.1.1 Généralités

Aucun être vivant ne peut naître et se développer sans carbone, hydrogène, oxygène, azote et phosphore. Ces éléments se retrouvent dans une molécule qui est la base de toute vie : l’Adénosine TriPhosphate ou ATP. Ainsi, les engrais, produits organiques ou minéraux, apportent au sol et donc aux plantes ces éléments nécessaires à la vie. Ils permettent aussi de compenser les prélèvements dus aux récoltes. Ils fournissent des éléments fertilisants majeurs (azote, phosphore, potassium), fertilisants secondaires (calcium, soufre, magnésium...) et des oligo-éléments (éléments chimiques présents en très faible quantité dans le sol). L’utilisation des engrais, majoritairement d’origine industrielle, est inséparable de l’agriculture intensive moderne qui permet d’obtenir de grandes quantités de produits à l’hectare. Parmi les éléments fertilisants, le phosphore est nécessaire aux légumes à racines, le potassium aux légumes à chair et l’azote aux légumes à feuilles.

Deux classes d’engrais sont à distinguer : les engrais minéraux, naturels ou produits par l’industrie, et les engrais organiques, comme le fumier.

En ce qui concerne les engrais azotés, seul l’azote sous forme d’ions nitrates NO₃⁻ est directement assimilable par la plante avec un effet « rapide ». L’azote sous forme d’ions ammonium NH₄⁺ qui se lient électrostatiquement aux argiles du sol (chargées négativement) est fixé dans le sol. Ces ions ammonium peuvent être oxydés en nitrates par les bactéries du sol en présence du dioxygène de l’air ce qui permet un effet « retard » dans l’assimilation par les végétaux.

Différentes réactions de formation d’ions nitrites NO₂⁻ et nitrates NO₃⁻ sont réalisées par l’intermédiaire de bactéries présentes dans le sol. Une étape de nitrification peut être réalisée en 2 temps (nitrosation puis nitratation).

1) La nitrosation est l’oxydation de l’ion ammonium en ion nitrite en présence d’oxygène selon l’équation :

\[
\text{NH}_4^+ + \frac{3}{2} \text{O}_2 \rightarrow \text{NO}_2^- + 2\text{H}^+ + \text{H}_2\text{O}
\]

Cette réaction est exothermique à tendance spontanée et la température favorable est située vers 37°C. Elle est réalisée par l’intermédiaire de bactéries nitrosantes chimiolithotrophes, autotrophes, aérobies appartenant à la famille des nitrobac teraceae du
genre *nitrosomonas Europea*. Ces bactéries utilisent l’énergie de la réaction pour leur propre synthèse organique.

2) La nitratation est l’oxydation de l’ion nitrite en ion nitrate en présence d’oxygène selon l’équation :

\[
\text{NO}_2^- + \frac{1}{2} \text{O}_2 \rightarrow \text{NO}_3^-
\]

Comme la précédente, cette réaction est aussi exothermique à tendance spontanée et la température favorable est située vers 37°C. Elle est réalisée par l’intermédiaire de bactéries nitratantes appartenant à la famille des *nitrobacteraceae* du genre *nitrobacter Winogradskii*. La nitrosation et la nitratation se font donc dans les mêmes conditions. Le bilan de la nitrification est finalement :

\[
\text{NH}_4^+ + \frac{3}{2} \text{O}_2 + \text{NO}_2^- + \frac{1}{2} \text{O}_2 \rightarrow \text{NO}_2^- + \text{NO}_3^- + 2\text{H}^+ + \text{H}_2\text{O}
\]

soit :

\[
\text{NH}_4^+ + 2 \text{O}_2 \rightarrow \text{NO}_3^- + \text{H}_2\text{O} + 2\text{H}^+
\]

Une nitrification optimale nécessite un pH de 8,5. Cependant, la réaction de nitrification libère des ions H⁺ et abaisse donc le pH ; c’est pour cela qu’une désacidification du sol est parfois nécessaire. Celle-ci s’effectue en utilisant du calcium ou du potassium qui vont remplacer les ions H⁺ insérés dans les feuilles d’argile.

Remarque : il existe aussi des réactions de dénitrification. Par exemple, c’est le cas pour l’humus, engrais naturel qui a une teneur de 5% en azote organique, en grande partie non assimilable. Chaque année, 1 à 2% de cet azote passe à l’état de NO₃⁻ ; c’est une étape de minéralisation. Une partie du nitrate NO₃⁻ présent dans l’humus est transformée par des microbes anaérobies en NO₂⁻ et en N₂ ; c’est une étape de dénitrification.

Les bactéries nitrosantes et nitratantes jouent un rôle important dans la biosphère en participant au cycle de l’azote présenté sur la figure 4.1[21] ci-dessous :

![Figure 4.1 Cycle de l’azote](image-url)
L’azote gazeux (constituant 78% des gaz atmosphériques), minéral ou organique, est au centre d’un système d’échanges fondamental pour la biosphère*. Cet élément est indispensable à tous les organismes vivants qui l’utilisent pour synthétiser les protéines. Cependant, seules quelques bactéries et algues sont capables de le fixer et de le combiner à l’hydrogène pour produire l’ammoniac. Des micro-organismes symbiotiques (vivant en symbiose avec certaines variétés de végétaux) permettent toutefois à l’azote gazeux moléculaire N₂ de passer à l’état de nitrate assimilable par les végétaux.

En remarque, le tableau 4.1 ci-dessous présente les différentes bactéries nitrifiantes (de la famille des *Nitrobacteraceae*):

<table>
<thead>
<tr>
<th>Bactéries oxydant l’ion ammonium NH₄⁺</th>
<th>Bactéries oxydant les nitrites NO₂⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrosomonas (Genre V)</td>
<td>Nitrooccus (Genre I)</td>
</tr>
<tr>
<td>Nitrosococcus (Genre VI)</td>
<td>Nitrospina (Genre II)</td>
</tr>
<tr>
<td>Nitrosospira (Genre VII)</td>
<td>Nitrococcus (Genre III)</td>
</tr>
<tr>
<td>Nitrosolobus (Genre VIII)</td>
<td>Nitrospira (Genre IV)</td>
</tr>
<tr>
<td>Nitrosovibrio (Genre IX)</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4.1 Différentes bactéries nitrifiantes[21]

4.1.2 Ammonitrates

Le nom d’ammonitrates a été donné en 1935, en France, à des engrais azotés simples, à base de nitrate d’ammonium, dont la définition a été précisée dans le règlement ministériel sur le transport des matières dangereuses[5] :

« On appelle ammonitrates à haut (32,6 à 34,6% en poids) et à moyen (28,0 à 32,6%) dosage des engrais à base de nitrate d’ammonium, sans autre constituant fertilisant, répondant aux conditions suivantes :

a) la teneur en chlore ne dépasse pas 0,02% (en pratique, elle est inférieure à 0,01%)
b) la teneur en matières combustibles* ne dépasse pas 0,2% s’il y a plus de 90% de nitrate d’ammonium ou 0,4% s’il y a moins de 90% de nitrate d’ammonium. En fait, tous les ammonitrates produits en France contiennent moins de 0,2% de matières combustibles et il n’est pas exceptionnel que ce taux soit inférieur à 0,1%
c) les matières minérales faisant partie de leurs constituants ne doivent pas exercer d’influence nocive sur la stabilité du nitrate d’ammonium. »

La matière associée au nitrate d’ammonium dans les ammonitrates peut être de l’argile, une marné* ou une dolomie#. Cette matière minérale peut être présente soit sous forme d’un revêtement autour de chaque grain (ammonitrates *enrobés*), soit incorporée dans toute la masse de chaque grain (ammonitrates *chargés*)[5].

Parmi les fertilisants minéraux, le nitrate d’ammonium est utilisé dans la fabrication d’engrais sous forme :
• d’engrais NP, NPK,
• de solution urée - nitrate,
• d’engrais simple solide : ammonitrate (engrais azotés le plus utilisé en France).

Il représente 24% de la consommation des engrais azotés dans le monde et sa production mondiale atteint actuellement environ 30 à 40 millions de tonnes / an (dont 8,5 millions de tonnes aux Etats-Unis).

Le tableau 4.2 ci-dessous présente la consommation des ammonitrates, de l’urée et des engrais binaires NP, NK, en milliers de tonnes d’azote :

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonitrate</td>
<td>7300</td>
<td>6577</td>
<td>1782</td>
<td>1024</td>
</tr>
<tr>
<td>Urée</td>
<td>8330</td>
<td>31569</td>
<td>1104</td>
<td>185</td>
</tr>
<tr>
<td>Binares NP, NK</td>
<td>1760</td>
<td>5503</td>
<td>597</td>
<td>116</td>
</tr>
<tr>
<td>Total tous types d’engrais</td>
<td>39220</td>
<td>72932</td>
<td>9551</td>
<td>2392</td>
</tr>
</tbody>
</table>

Tableau 4.2 Consommation par produits en milliers de tonnes par an

Les quantités mensuelles d’éléments fertilisants livrées à la culture sont référencées dans les deux tableaux ci-dessous (source UNIFA : Union des Industries de la Fertilisation) :

• total engrais azotés :

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>195.2</td>
<td>192.8</td>
<td>303.9</td>
<td>155.2</td>
<td>125.6</td>
<td>171.0</td>
<td>113.1</td>
<td>126.9</td>
<td>172.7</td>
<td>137.3</td>
<td>196.4</td>
<td>230.0</td>
<td>2120.1</td>
</tr>
<tr>
<td>2000</td>
<td>200.8</td>
<td>227.2</td>
<td>296.9</td>
<td>140.9</td>
<td>113.1</td>
<td>118.8</td>
<td>120.2</td>
<td>157.3</td>
<td>186.2</td>
<td>209.6</td>
<td>232.0</td>
<td>181.6</td>
<td>2184.6</td>
</tr>
<tr>
<td>2001</td>
<td>189.1</td>
<td>160.2</td>
<td>131.7</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4.3 Quantité totale d’engrais azotés livrée à la culture en France

(une : 1000 tonnes d’azote)

• ammonitrates :

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>135.3</td>
<td>115.6</td>
<td>121.7</td>
<td>51.3</td>
<td>39.7</td>
<td>57.0</td>
<td>51.8</td>
<td>69.3</td>
<td>99.7</td>
<td>86.0</td>
<td>125.8</td>
<td>143.8</td>
<td>1096.8</td>
</tr>
<tr>
<td>2000</td>
<td>141.9</td>
<td>124.3</td>
<td>117.3</td>
<td>61.3</td>
<td>38.1</td>
<td>42.6</td>
<td>61.5</td>
<td>81.5</td>
<td>108.0</td>
<td>125.6</td>
<td>144.4</td>
<td>118.0</td>
<td>1164.4</td>
</tr>
<tr>
<td>2001</td>
<td>124.8</td>
<td>97.6</td>
<td>42.6</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4.4 Quantité d’ammonitrates livrée à la culture en France

(une : 1000 tonnes d’azote)

Ce type d’engrais est largement répandu dans le monde du fait de son prix peu élevé. Pendant la campagne de fertilisation 1999-2000, l’agriculture française a utilisé 3,5 millions de tonnes d’ammonitrates sous forme solide, ce qui représente 43% de la fertilisation azotée totale (comprenant tout type d’engrais contenant de l’azote) et 52% de la fertilisation azotée simple (comprenant le nitrate d’ammonium mais aussi l’urée, le sulfate d’ammonium et le nitrate de calcium).
Remarque : pour une quantité de 1000 tonnes d’azote présente dans NH$_4$NO$_3$, on obtient une quantité de 2857 tonnes d’ammonitrate. Pour l’année 2000, d’après le tableau 4.4, la quantité d’azote présente dans l’ammonitrate est de 1164,4 milliers de tonnes soit 3326,7 milliers de tonnes d’ammonitrates.

Les prix des ammonitrates en sac à 33% en poids d’azote sont répertoriés dans le tableau 4.5 ci-après[22] (source AGRESTE : Services de Statistique Agricole):

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>117</td>
<td>117</td>
<td>118</td>
<td>118</td>
<td>114</td>
<td>110</td>
<td>107</td>
<td>103</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>2000</td>
<td>107</td>
<td>118</td>
<td>124</td>
<td>127</td>
<td>128</td>
<td>126</td>
<td>125</td>
<td>131</td>
<td>137</td>
<td>141</td>
<td>146</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>150</td>
<td>152</td>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128</td>
</tr>
</tbody>
</table>

Tableau 4.5 Prix des ammonitrates à 33% en poids
(unité : francs pour 100 kg)

Le prix de revient des engrais azotés est lié au coût du gaz naturel (50% du prix de revient des ammonitrates) puisque celui-ci fournit 90% de l’ammoniac nécessaire à la fabrication des engrais azotés.

Contenant à l’état pur 34,8% en masse d’azote, le nitrate d’ammonium est commercialisé sous des concentrations différentes selon les législations locales. En France, deux qualités sont accessibles à la vente :

- les ammonitrates à haute teneur, sous forme de sel presque pur, titrent à plus de 28% (souvent 33,5%) d’azote et sont interdits dans certains pays d’Europe. Ils contiennent environ 96% de nitrate d’ammonium pur, l’additif étant constitué par des ions sulfates qui favorisent une cristallisation très dense des granulés, rendant l’engrais quasi imperméable au fuel et inutilisable en tant qu’explosif.

L’ammonitrate à haute teneur doit satisfaire à la norme NF U 42-001 qui comporte un test de détonabilité sur des échantillons de plusieurs kilogrammes. Le produit doit subir ce test avec succès pour être commercialisé.

La production française se situe autour de 9000 tonnes par jour.

- les ammonitrates à basse teneur titrent à 28% au plus et contiennent environ 80% de nitrate d’ammonium pur. Des ammonitrates à 21% ont longtemps été vendus au même prix que le sulfate d’ammonium, titrant lui aussi à 21%. Cependant, en élevant le titre en azote, des économies sur la sacherie, le transport et l’épandage ont été réalisées.

Remarque : en Allemagne, depuis l’accident d’Oppau en 1921, la concentration la plus élevée commercialisable en agriculture est limitée à 28% d’azote (ce qui abaisse fortement le risque d’explosion). Toutefois, l’importation d’ammonitrates titrant à 33,5% d’azote n’est pas interdite.

Les ammonitrates sont très utilisés pour leur action fertilisante prolongée. En effet, comme il a été vu précédemment, les plantes assimilent directement les ions nitrates, mais les ions ammonium doivent être oxydés en nitrates par les bactéries du sol.

Les qualités chimiques des ammonitrates permettent à l’agriculteur d’optimiser ses rendements en limitant les pertes par lessivage et les qualités physiques autorisent un bon épandage.
Notons toutefois qu’il faut éviter l’épandage d’engrais azotés en automne et sur des sols dénudés de végétaux. En effet, tous les sels azotés étant très solubles dans l’eau, les pluies hivernales les entraîneront vers la nappe phréatique avant utilisation, s’ils sont apportés en automne. De plus, les engrais azotés s’enfoncent dans le sol de plus de 20 cm par an en moyenne, uniquement sous l’effet des pluies, ce qui les rend inaccessibles aux racines des végétaux qu’ils sont censés nourrir. L’apport d’azote doit donc être effectué au printemps, selon la méthode dite « en couverture » ; le nitrate est épandu sur la culture à la fin de l’hiver, lorsque la tige n’est pas encore formée, et n’est jamais enfoui au moment des semaines, comme les autres fertilisants potassiques ou phosphatés. Un apport d’engrais azoté au moment des semaines pollue le sol et ne fertilise rien.

Il est enfin intéressant de comparer l’ammonitrate avec les autres engrais azotés simples :

- le sulfate d’ammonium, (NH₄)₂SO₄, qui a été le premier engrais azoté « chimique », titre à 21% d’azote. Il a pour inconvénient d’acidifier les sols et de diminuer leur fertilité. Son utilisation actuelle est due à son obtention comme sous-produit dans la fabrication des caprolactames; il est ainsi valorisable.
- le nitrate de calcium, Ca(NO₃)₂, est un engrais très rapidement actif qui ne laisse aucun résidu nuisible dans le sol (contrairement au sulfate d’ammonium) mais qui ne titre qu’à 15% en azote. Il est encore utilisé car il s’agit d’un sous-produit de fabrication d’engrais phosphatés.
- l’urée, NH₂CONH₂, titrant à 46% d’azote, possède une action « retard » plus longue que celle de l’ammonitrate. En effet, l’azote uréique doit être transformé en azote ammoniacal puis en azote nitrique assimilé par les végétaux. Ceci peut être un handicap dans l’utilisation de l’urée par rapport à celle du nitrate d’ammonium.
4.2 Explosifs nitratés

Le développement dès la seconde du moitié du XIXème siècle de la détonique, science étudiant les molécules explosives et le phénomène de détonation, contribua à l’utilisation du nitrate d’ammonium comme explosif. Ainsi, les explosifs à base de nitrate d’ammonium furent développés à partir de 1887 dans plusieurs pays, dont la France, et apparurent plus tard aux États-Unis (Nitramon, Du Pont, en 1935). Compte tenu de ses propriétés explosives, le nitrate d’ammonium fut en premier lieu d’usage militaire avant de devenir un explosif civil.

L’ensemble des explosifs à base de nitrate d’ammonium fabriqués aujourd’hui (nitratés proprement dits, nitrates-fuel, bouillies et émulsions explosives) représente 90% du marché français des explosifs, soit 35 000 tonnes par an. Ce succès, par rapport aux dynamites, est dû en grande partie à leur prix de revient et de vente plus faible, ainsi qu’à leur meilleure stabilité lors du stockage et leur sûreté à l’utilisation. L’usage intensif du nitrate d’ammonium dans les explosifs commerciaux a ainsi révolutionné cette industrie en remplaçant notamment les dynamites à base de nitroglycérine.

Les différents types d’explosifs à base de nitrate d’ammonium sont présentés ci-après :

- les **explosifs nitratés proprement dits** sont à base de nitrate d’ammonium (80% environ en masse) et d’un explosif pur tel que le trinitrotoluène (TNT) seul ou mélangé avec de la pentrite (nitropentaérythrite C(CH2ONO2)4) ou de la pentolite (mélange TNT et PETN).

- les **nitrates-fuels** ou ANFO (Ammonium Nitrate Fuel Oil), constitués de 94% en masse de nitrate d’ammonium et 6% d’huiles minérales (en général du fuel domestique), ont connu un développement considérable dans les années qui ont suivi la seconde guerre mondiale. En dépit d’une vitesse de détonation relativement faible (environ 4000 m.s⁻¹), les ANFO présentent deux avantages : ce sont les explosifs les moins coûteux et les plus stables. Par ailleurs, pour améliorer la sensibilité à l’amorce, de la poudre d’aluminium ou un tensio-actif est ajouté. La vitesse de détonation augmente avec le diamètre de la charge, le taux de fuel (vitesse maximale atteinte pour un taux de fuel de 6%) et le confinement. Les nitrates-fuel ne peuvent pas être utilisés en présence d’eau qui diminue leur sensibilité.

La qualité du nitrate, en particulier sa porosité, joue un rôle important dans les performances de l’ANFO. En effet, le nitrate d’ammonium, destiné à la confection d’explosif type ANFO, doit posséder une structure poreuse ou être à l’état de farine pour que sa surface spécifique soit suffisamment élevée et permette d’absorber les quantités optimales de fuels (4%). Ces caractéristiques sont nécessaires à l’obtention d’un explosif ayant un rendement maximum.

Remarque : l’apport de fuel est destiné à brûler avec l’oxygène libéré (à savoir 16 g d’oxygène par mole de NH4NO3 pesant 80 g).

Du fait de leur faible sensibilité face aux agressions mécaniques, les nitrates-fuels sont chargés en vrac dans des trous de mine et fabriqués sur site, dans des installations mobiles montées sur camion. Ils sont conditionnés, uniquement en vrac, en sacs de papier multicouches de 25 kg. Ils sont essentiellement destinés aux travaux de génie civil car ils ont une vitesse de déflagration de l’ordre de 3000 m.s⁻¹ contre 6000 m.s⁻¹ pour les dynamites et 9000 m.s⁻¹ pour les cheddites.
De ce fait, ces explosifs type ANFO sont utilisés pour abattre de grandes quantités de roches ou ameublir des terrains trop compacts pour les engins de terrassement.

Lorsqu’une matière combustible telle que le fuel est présent en proportions stoechiométriques (env. 5,6%), l’énergie dégagée triple pratiquement :

$$3n \text{NH}_4\text{NO}_3 + (-\text{CH}_2-)_n \rightarrow 3n \text{N}_2 + 7n \text{H}_2\text{O} + n \text{CO}_2 \quad \Delta H = n \times 428,8 \text{kJ.g}^{-1}$$

- les ANFO alourdis sont constitués par du nitrate-fuel classique enrobé dans une matrice d’émulsion ou de bouillie explosive, dans les proportions de 25 à 75%. Ce sont les explosifs de la génération la plus récente.

Par ce procédé, les performances et la résistance à l’eau des nitrates-fuel sont améliorées, sans accroître pour autant leur sensibilité vis-à-vis des agressions mécaniques.

Ils sont surtout utilisés en vrac et se présentent sous deux formes :

- produits granulaires plus ou moins collants lorsque la proportion de nitrate-fuel est supérieure à 40%. Leur chargement en vrac s’effectue alors par gravité.

- pâtes plus ou moins visqueuses contenant des granulés épars de nitrate-fuel lorsque la proportion de nitrate-fuel est inférieure à 40%. Leur chargement en vrac s’effectue alors par pompage.

Ces produits sont assimilés à des émulsions* et sont préparés sur site comme les ANFO classiques.

- les bouillies explosives, à base de nitrate et d’eau gélifiée, sont apparues en Amérique du Nord il y a environ 35 ans et sont appelées « slurry », signifiant en anglais « boue, pâte, bouillie ».

Les bouillies explosives typiques peuvent contenir :

- des nitrates d’ammonium NA (30 à 70%), de calcium NC (15 à 20%), de sodium NS (10 à 15%) et d’amines aliphatiques (jusqu’à 40%)

- de l’eau (10 à 20%)

- des produits sensibilisants dont l’aluminium (15 à 25%), le TNT ou d’autres sensibilisants (5 à 15%)

- des gélifiants (1 à 2%)

- des stabilisants (0,1 à 2%)

- de l’éthylèneglycol (3 à 15%)

- des produits divers tels que oxydants, fuels, explosifs, sensibilisants chimiques, épaississants, agents liants, micropores (perles creuses en verre).

Ces bouillies couvrent une large gamme de viscosités* de 1 Pa.s à 2 kPa.s (entre 10 et 20000 Poises) et peuvent posséder une certaine stabilité à haute température.

Les bouillies sont rendues résistantes à l’eau par addition de colloïdes* hydrophiles* qui lient les particules solides et qui préviennent ainsi la diffusion de l’eau à travers le système. L’ajout d’antigel tels que le glycérol, le méthanol et le diéthylèneglycol est possible.

Parmi ces bouillies, les gels à consistance pâteuse et généralement encartouchés (comme les dynamites) sont à distinguer des bouillies pompables qui peuvent être chargées en vrac et
Les bouillies explosives sont fabriquées dans des installations mobiles. Les bouillies explosives sont utilisées de manière intensive dans des conditions d’humidité mais aussi dans les carrières à ciel ouvert. Leur haute densité, leur fluidité et leur grande énergie intrinsèque les rendent plus efficaces dans la fragmentation de roches. Des mélanges de bouillies ont aussi été étudiés pour des applications militaires.

Les performances explosives des bouillies sont supérieures à celles des nitrates-fuels, comme le montre le tableau 4.6 comparatif avec le TNT et l’ANFO 94/6 :

<table>
<thead>
<tr>
<th>Explosif</th>
<th>Pression de détonation (GPa)</th>
<th>Vitesse de détonation (km.s⁻¹)</th>
<th>Chaleur de détonation (kJ.g⁻¹)</th>
<th>Volume excavé relatif à un poids égal de TNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFO</td>
<td>6,0</td>
<td>4,56</td>
<td>3,76</td>
<td>1,0-1,1</td>
</tr>
<tr>
<td>Bouillie</td>
<td>10,4</td>
<td>6,05</td>
<td>3,05</td>
<td>1,0-1,2</td>
</tr>
<tr>
<td>Bouillie (2% d’Al)</td>
<td>6,0</td>
<td>4,30</td>
<td>3,14</td>
<td>1,0-1,2</td>
</tr>
<tr>
<td>Bouillie (8% d’Al)</td>
<td>6,6</td>
<td>4,50</td>
<td>4,64</td>
<td>1,2-1,4</td>
</tr>
<tr>
<td>Bouillie (20% d’Al)</td>
<td>8,5</td>
<td>5,70</td>
<td>6,07</td>
<td>1,5-1,7</td>
</tr>
<tr>
<td>Bouillie (35% d’Al)</td>
<td>8,1</td>
<td>5,00</td>
<td>8,16</td>
<td>1,6-1,8</td>
</tr>
<tr>
<td>TNT</td>
<td>18,7</td>
<td>6,93</td>
<td>4,61</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Tableau 4.6 Comparaison de performances explosives

Les bouillies contenant de l’aluminium sont parmi les plus grands producteurs d’énergie de tous les explosifs industriels.

- les émulsions sont des mélanges intimes de nitrates minéraux en solution aqueuse dispersés en microgouttelettes dans une phase combustible liquide huileuse. Elles sont nées en Amérique du Nord et constituent la troisième génération d’explosifs à base de nitrate d’ammonium.

Elles contiennent :
- 70 à 80% de nitrates minéraux
- 8 à 15% d’eau
- 4 à 10% d’huile.

Elles sont sensibilisées par addition de microbilles de verre creuses ou par création chimique de bulles gazeuses bien dispersées au sein de l’émulsion. Ayant une vitesse de détonation supérieure à 5000 m.s⁻¹, elles se rapprochent des dynamites en brisance. Elles sont, par ailleurs, plus faciles à utiliser et à fabriquer que les bouillies.
Le tableau 4.7 ci-après récapitule la composition type des explosifs industriels à base de nitrate d’ammonium :

<table>
<thead>
<tr>
<th>Type d’explosif</th>
<th>Composition type</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosifs nitratés</td>
<td>TNT</td>
<td>10 à 15</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>65 à 85</td>
</tr>
<tr>
<td></td>
<td>Farine de bois</td>
<td>0 à 5</td>
</tr>
<tr>
<td></td>
<td>Stéarate de calcium</td>
<td>env. 1</td>
</tr>
<tr>
<td></td>
<td>Sel</td>
<td>0 à 20</td>
</tr>
<tr>
<td>Nitrate-fuel ordinaire</td>
<td>NA</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Fuel</td>
<td>6</td>
</tr>
<tr>
<td>Nitrate-fuel à l’aluminium</td>
<td>NA</td>
<td>88 à 92</td>
</tr>
<tr>
<td></td>
<td>Fuel</td>
<td>3 à 5</td>
</tr>
<tr>
<td></td>
<td>Aluminium</td>
<td>5 à 10</td>
</tr>
<tr>
<td>Bouillies</td>
<td>Eau</td>
<td>8 à 15</td>
</tr>
<tr>
<td></td>
<td>Nitrate d’ammonium, de sodium, de calcium</td>
<td>35 à 60</td>
</tr>
<tr>
<td></td>
<td>Sensibilisants</td>
<td>5 à 40</td>
</tr>
<tr>
<td></td>
<td>Divers (gélifiant, réticulant...)</td>
<td>2 à 5</td>
</tr>
<tr>
<td>Emulsions</td>
<td>Eau</td>
<td>8 à 15</td>
</tr>
<tr>
<td>Nitrate-fuel alourdi</td>
<td>Nitrates minéraux</td>
<td>70 à 80</td>
</tr>
<tr>
<td></td>
<td>Huiles diverses</td>
<td>4 à 10</td>
</tr>
<tr>
<td></td>
<td>Sensibilisants</td>
<td>0,2 à 5</td>
</tr>
</tbody>
</table>

Tableau 4.7 Composition type des explosifs industriels à base de nitrate d’ammonium NA25
5. Sécurité lors de manipulations

5.1 Toxicité\(^{[19,28]}\)

Le nitrate d’ammonium possède une toxicité aiguë* ; sa DL 50* est de 2217 mg.kg\(^{-1}\) par voie orale chez le rat.
Chez l’homme, l’inhalation du nitrate d’ammonium peut causer une irritation des voies respiratoires. L’ingestion du nitrate d’ammonium entraîne malaises et vomissements. L’absorption de grandes quantités provoque une méthémoglobinémie* avec céphalées, des troubles du rythme cardiaque, un chuté de tension, de la dyspnée* et des spasmes. Le syndrome directeur est une cyanose (coloration bleue du sang).
Une exposition répétée entraînant une absorption orale de faibles doses de nitrate d’ammonium peut provoquer des faiblesses, des maux de tête, des troubles mentaux. Le contact avec la peau et les yeux cause des irritations, des rougeurs et de la douleur. L’inhalation des produits de décomposition peut provoquer des oedèmes des voies respiratoires.

L’impact sur l’environnement se caractérise par :
- une toxicité pour les organismes aquatiques
- un danger pour l’eau potable ; il ne faut donc pas l’évacuer dans les eaux naturelles, les eaux d’égouts et le sol.

5.2 Informations réglementaires\(^{[29]}\)

Les phrases de risque sont :
- R8 : favorise l’inflammation des matières combustibles
- R9 : peut exploser en mélange avec des matières combustibles.

Les phrases de sécurité sont :
- S15 : conserver à l’écart de la chaleur
- S16 : conserver à l’écart de toute source d’ignition. Ne pas fumer.
- S41 : en cas d’incendie ou d’explosion, ne pas respirer les fumées.

5.3 Précautions de stockage\(^{[30]}\)

Les principales propriétés du nitrate d’ammonium, les principaux dangers qu’il présente et les principales précautions de stockage qui s’imposent, d’après la Commission Canadienne des Transports, sont résumées dans les lignes qui suivent :

a) Le nitrate d’ammonium est un oxydant qui, à des températures élevées, entretient la combustion de matériaux comme le bois, le papier, le mazout et le soufre ; mais d’ordinaire, il ne donne pas de réactions produisant une combustion entretenue à moins qu’il y ait plus d’un pour cent de matière combustible ;

b) Le nitrate d’ammonium subit une décomposition thermique lorsqu’il est chauffé à des températures dépassant approximativement 66°C, et dans certaines conditions, dont quelques-
unes sont mentionnées ci-dessous, cette décomposition peut devenir dangereuse. Comme le nitrate d’ammonium est habituellement emmagasiné en très grandes quantités, il peut transformer un incendie ordinaire en un incendie dont les proportions touchent le désastre, et pour cette raison, même une mince probabilité de danger ne saurait être ignorée ;

c) Il importe que le nitrate d’ammonium soit suffisamment séparé des matières combustibles et que le risque d’incendie soit maintenu aussi bas que possible ;

d) Les engrais mélangés contenant au plus 60 pour cent de nitrate d’ammonium et qui ne renferment aucune autre matière oxydante, le reste étant des matières inertes, ne sont pas, d’ordinaire, censés être un danger d’incendie ou d’explosion en emmagasinage; mais certains additifs ou diluants peuvent rendre les engrais mélangés aussi dangereux ou même plus dangereux que le nitrate d’ammonium pur; pour cette raison, la dispense de l’observation des prescriptions de la Commissionx dépendra de la nature et des quantités des ingrédients composant le mélange ;

e) Il a été démontré en laboratoire que lorsque les gaz de décomposition sont suffisamment emprisonnés, ils accélèrent ou favorisent la réaction de décomposition. Cet emprisonnement peut se produire accidentellement, par exemple, en cas d’effondrement d’un bâtiment ;

f) Deux des gaz de décomposition, le protoxyde d’azote et le gaz ammoniac, peuvent produire des explosions lorsqu’ils sont mélangés à certains autres gaz comme, par exemple, l’oxyde de carbone. Ces explosions peuvent avoir une puissance suffisante pour faire détoner le nitrate d’ammonium ;

g) L’étude des bâtiments d’emmagasinage, devrait prévoir une ventilation suffisante, au cas où il se produirait un incendie ;

h) On sait que de petites quantités d’oxyde de fer, d’oxyde de chrome et de certains des sels inorganiques du chrome, du cuivre et du manganèse accroissent ou activent la décomposition du nitrate d’ammonium; il a également été établi que certains métaux pulvérisés comme le zinc, le magnésium, l’étain et le cuivre réagissent avec le nitrate d’ammonium de façon à former des composés qui sont sensibles au choc ;

i) Les précautions à prendre pour contenir dans des limites acceptables les dangers que présentent le nitrate d’ammonium de la classe pour engrais et les engrais mélangés contenant du nitrate d’ammonium sont relativement simples; l’observation des prescriptions de la Commissionx sur l’emmagasinage réduira suffisamment le danger d’explosion du nitrate d’ammonium pour qu’il ne soit pas nécessaire d’en tenir compte dans les dispositions relatives à la distance de sécurité ;

j) L’eau étant le seul agent extincteur satisfaisant qui soit connu dans le cas d’un incendie de nitrate d’ammonium, de grandes quantités devraient être disponibles pour usage immédiat à proximité de l’installation d’emmagasinage ;

k) Un incendie de nitrate d’ammonium dégage de grandes quantités de gaz très toxiques de sorte que les personnes qui combattent un tel incendie se trouvent dans l’impossibilité de rester à proximité à moins de porter un appareil respiratoire autonome ;

l) Tous les bâtiments occupés qui se trouvent dans le voisinage d’un incendie de nitrate d’ammonium seront évacués promptement.

x : Commission Canadienne des Transports
5.4 Législation sur le stockage

5.4.1 Comparaison de trois législations

- La législation anglaise est issue du HSE (Health and Safety Executive)[31], elle concerne le stockage de nitrate d’ammonium. Cependant, elle ne s’applique ni au transport, ni au nitrate d’ammonium considéré comme un explosif et assigné à la Classe 1 du système de classification de l’ONU, ni au stockage d’engrais au nitrate d’ammonium dans des quantités inférieures à 1 tonne, ni aux engrais qui contiennent 28% en poids ou moins d’azote.

- La législation française est basée sur l’arrêté[32] du 10 janvier 1994. Cet arrêté régit les conditions d’implantation et les règles d’aménagement des dépôts nouveaux d’engrais simples solides à base de nitrates (ammonitrates, sulfonitrates...) correspondant aux spécifications de la norme NF U 42-001 (ou à la norme européenne équivalente) ou engrais composés à base de nitrates, relevant de la rubrique 1331 et 1330 de la Nomenclature des installations classées*. Le contenu des rubriques n° 1330 et n° 1331 est le suivant :

Rubrique n° 1330 - Dépôt de nitrate d’ammonium :

Elle concerne le stockage des nitrates d’ammonium, y compris sous forme d’engrais simples ne correspondant pas aux spécifications de la norme NF U 42-001 ou à la norme européenne équivalente, et les solutions de nitrate d’ammonium dont la concentration en nitrate d’ammonium est supérieure à 90% en poids (ou en masse) :

La quantité totale susceptible d’être présente dans l’installation étant :

1) supérieure ou égale à 2500 T codifié (A-6) S [soumise à une autorisation préfectorale et à un affichage d’informations et d’avertissement 6 km autour du lieu de stockage],
2) supérieure à 350 t, mais inférieure à 2500 T codifié (A-3) S [soumise à une autorisation préfectorale et à un affichage d’informations et d’avertissement 3 km autour du lieu de stockage],
3) supérieure à 100 t, mais inférieure ou égale à 350 T codifié (D) [soumise à une déclaration préalable].

A: Autorisation -X : affichage à X kilomètres autour du lieu de stockage
S: Servitude
D: Déclaration

Rubrique n° 1331 - Stockage d’engrais à base de nitrates :

Engrais simples solides à base de nitrates (ammonitrates, sulfonitrates) correspondant aux spécifications de la norme NF U 42-001 (ou à la norme européenne équivalente) ou engrais composés à base de nitrates (stockage de).
La quantité totale susceptible d’être présente dans l’installation étant :

1) Supérieure ou égale à 5000 T codifié (A-4) S) [soumise à une autorisation préfectorale et à un affichage d’informations et d’avertissement 4 km autour du lieu de stockage],
2) Supérieure à 1250 T, mais inférieure à 5000 T codifié (A-2) [soumise à une autorisation préfectorale et à un affichage d’informations et d’avertissement 2 km autour du lieu de stockage].

Nota :
1. concernant les engrais azotés simples et les engrais composés azotés binaires (N, P ou N, K) ou ternaires (N, P, K), ne sont à prendre en compte que les engrais à base de nitrates (ex : ammonitrates). En conséquence, les engrais azotés non à base de nitrates (ex : urée) ne sont pas comptabilisés.
2. l’identification d’un engrais à base de nitrate peut se faire par la mention azote nitrique dans les documents commerciaux.

La législation canadienne est extraite d’un « Règlement sur les installations d’emmagasinage du nitrate d’ammonium » établi par la codification des règlements du Canada[30], 1978. Il concerne l’étude, l’emplacement, la construction, l’exploitation et l’entretien des installations d’emmagasinage du nitrate d’ammonium qui appartiennent à une compagnie de chemin de fer. Ce règlement ne s’applique pas aux installations d’emmagasinage qui en aucun temps ne contiennent plus de 3000 livres de nitrate d’ammonium ou aux engrais mélangés contenant du nitrate d’ammonium qui renferment moins de 60 pour cent de nitrate d’ammonium au poids.

5.4.2 Implantation et distances à respecter

Angleterre

Dans certaines circonstances, comme lorsque le stockage est situé près de zones très peuplées, il est préférable de stocker le nitrate d’ammonium à l’extérieur, pourvu qu’il soit dans un secteur sûr loin de matériels combustibles et de sources de contamination.

Canada

Pour un stockage de plus de 200 tonnes, il est nécessaire d’avoir l’accord du directeur de l’exploitation et de la Commission Canadienne des Transports. La distance horizontale minimale entre une installation d’emmagasinage et le plus proche point d’un autre bâtiment, d’un ouvrage ou d’une ligne de démarcation de propriété sera de :

- 300 pieds (soit environ 100 mètres) de toute école, hôpital, hôtel, motel, église, théâtre, auditorium, centre sportif, centre commercial, maison ou autre habitation à plusieurs logements, de tout immeuble à bureaux, grand magasin ou bâtiment commercial comprenant plus qu’un rez-de-chaussée ou de tout autre bâtiment semblable servant à des réunions ou utilisé par des institutions, servant au logement, aux affaires, aux services personnels ou à des fins commerciales, ou de tout bâtiment que la Commission juge appartenir à cette catégorie ;
• 150 pieds de toute habitation à logement unique, gare à voyageurs, gare-habitation, de tout bâtiment à bureaux, grand magasin, bâtiment commercial ou restaurant ne comprenant qu’un rez-de-chaussée, ou de tout autre bâtiment semblable utilisé pour le logement, les affaires, les services personnels ou à des fins commerciales, ou de tout autre bâtiment que la Commission juge appartenir à cette catégorie ;

• 100 pieds de toute usine, atelier de chemin de fer ou autre bâtiment utilisé principalement pour la fabrication ou la transformation ou pour des travaux d’entretien ou de réparation, ou de tout immeuble à bureaux attenant et associé à ces bâtiments, sauf que la distance devrait être d’au moins 50 pieds si la capacité de l’installation d’emmagasinage ne dépasse pas 200 tonnes ;

• 100 pieds de toute gare à marchandises, entrepôt, réservoir d’emmagasinage ou autre installation d’emmagasinage ou de transbordement utilisée pour une marchandise combustible ou dangereuse, ou de tout immeuble à bureaux attenant et associé à ces bâtiments, sauf que la distance devrait être d’au moins 50 pieds si la capacité de l’installation d’emmagasinage ne dépasse pas 200 tonnes ;

Soit en résumé :

<table>
<thead>
<tr>
<th>Type de bâtiment</th>
<th>Bâtiment comprenant plus qu’un rez-de-chaussée</th>
<th>Bâtiment comprenant un seul rez-de-chaussée</th>
<th>installations d’emmagasinage</th>
<th>autres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distances à respecter</td>
<td>300 pieds</td>
<td>150 pieds</td>
<td>100 pieds</td>
<td>d < 100 pieds</td>
</tr>
</tbody>
</table>

De plus grandes distances de sécurité pourront être imposées pour les installations d’emmagasinage situées dans des régions très peuplées ou autres régions que la Commission aura jugées présenter des dangers spéciaux.

➢ France

Sans préjudice de l’application de textes spécifiques, l’implantation du dépôt doit être conforme à la règle suivante :

La distance séparant le magasin de stockage des habitations occupées par des tiers, des établissements recevant du public et des immeubles de grande hauteur, ainsi que des installations classées soumises à la législation des installations classées présentant des risques d’explosion, est égale à au moins trois fois sa hauteur avec un minimum de 30 mètres.

<table>
<thead>
<tr>
<th>Type de bâtiment</th>
<th>habitations, établissements recevant du public, immeubles de grande hauteur, installations soumises à la législation des installations classées présentant des risques d'explosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance à respecter</td>
<td>3 fois la hauteur du bâtiment de stockage et au minimum 30 mètres</td>
</tr>
</tbody>
</table>
5.4.3 Aménagement des locaux

<table>
<thead>
<tr>
<th>Aménagement des locaux</th>
<th>Angleterre</th>
<th>Canada</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bâtiment avec étages</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td>Matériaux de construction utilisés</td>
<td>Non combustibles (bétons, briques,....)</td>
<td>A priori non combustibles (bétons, briques,...). Si le matériau est combustible ou métallique, il sera protégé par un enduit approprié contre l’ imprégnation par le nitrate d’ammonium.</td>
<td>Matériaux incombustibles, parois coupe-feu (ex : béton), portes pare-flammes, charpentes métalliques protégées par des protections thermiques.</td>
</tr>
<tr>
<td>Stockage extérieur envisagé</td>
<td>Oui, si la population proche est dense (en ville,...)</td>
<td>Non conseillé</td>
<td>Non conseillé</td>
</tr>
<tr>
<td>Nettoyage de l’aire de stockage avant emploi</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Accès au stockage</td>
<td>Tenir les portes du local fermées autant que possible. Contrôler l’accès au stockage.</td>
<td>Les piles de stockage doivent être espacées d’au moins 1 mètre dans le cas général et d’au moins 1,40 mètres pour le passage principal.</td>
<td>Au moins deux issues vers l’extérieur, dans deux directions opposées, sont prévues dans le magasin de stockage. Elles s’ouvrent vers l’extérieur. En dehors des séances de travail, les portes du dépôt sont fermées à clef.</td>
</tr>
<tr>
<td>Présence de fosses ou de canaux</td>
<td>A éviter</td>
<td>A éviter, mais peut être autorisée par la Commission des Transports si des rebords ou d’autres particularités de construction empêchent le nitrate d’ammonium fondu d’y couler.</td>
<td>A éviter</td>
</tr>
</tbody>
</table>
5.4.4 Equipements et maintenance

<table>
<thead>
<tr>
<th>Equipements et maintenance</th>
<th>Angleterre</th>
<th>Canada</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance des véhicules</td>
<td>Maintenir les véhicules, les chariots élévateurs et les pelles mécaniques propres et bien entretenus. Éviter toute fuite de produit combustible (huile, carburant, ...).</td>
<td>Le matériel ou les véhicules mus par des moteurs à combustion interne et à carburant inflammable pourront être utilisés dans une installation d'emmagasinage si leur échappement est muni de pare-étincelles, mais ils ne seront pas approvisionnés en carburant, réparés ni entretenus dans l'installation d'emmagasinage.</td>
<td>Les appareils mécaniques utilisés à l'intérieur du magasin de stockage pour la manutention d'engrais ne devront présenter aucune zone chaude non protégée susceptible d'entrer en contact avec les engrais (pot d'échappement, ...). Ils seront disposés de façon à ne créer aucune possibilité de mélange de toute matière combustible avec les engrais.</td>
</tr>
<tr>
<td>Stationnement des véhicules</td>
<td>Ne pas entreposer de véhicules dans le local de stockage à moins d'avoir prévu un dispositif efficace pour isoler le nitrate d'ammonium.</td>
<td>Le stationnement est interdit dans une installation d'emmagasinage pour la nuit et pour toute période de plus de 4 heures lorsque l'installation d'emmagasinage est sans surveillance.</td>
<td>Les engins de manutention doivent être totalement nettoyés avant et après entretien et réparation, et rangés après chaque séance de travail à l'extérieur du magasin de stockage. Les réparations seront effectuées à l'extérieur du magasin de stockage.</td>
</tr>
<tr>
<td>Matériel de manutention</td>
<td>Interdire que des palettes, des cordes, des couvertures, ou d'autres équipements soient imprégnés avec le nitrate d'ammonium.</td>
<td>Non précisé</td>
<td>Les palettes ne seront en aucun cas utilisées comme séparation pour retenir les engrais. Les palettes seront dans tous les cas éloignées des tas d'engrais et rangées dans un endroit prévu à cet effet. Le matériel doit être régulièrement nettoyé de manière à éviter des accumulations de poussières.</td>
</tr>
<tr>
<td>Equipement électrique</td>
<td>Placer l'équipement électrique afin qu'il ne puisse pas entrer en contact avec les matériels stockés. Assurer l'inspection régulière et la maintenance de l'équipement électrique.</td>
<td>L'emplacement d'une installation d'emmagasinage qui renferme du nitrate d'ammonium en sacs et qui ne présente aucun autre danger en ce qui concerne l'électricité est désigné comme étant un «emplacement ordinaire». Toute autre installation est considérée comme étant un emplacement de classe II, division II.</td>
<td>Les canalisations et le matériel électrique ne doivent en aucun cas être en contact avec les engrais, et doivent être étanches à l'eau et aux poussières. Toute installation électrique autre que celle nécessaire à l'exploitation du stockage est interdite. A proximité d'au moins une issue et à l'extérieur, est installé un interrupteur général, bien signalé et protégé des intempéries, permettant de couper l'alimentation électrique de l'installation, sauf celle des moyens de secours.</td>
</tr>
<tr>
<td>Chauffage</td>
<td>La décomposition pourrait survenir si les appareils de chauffage sont placés près du nitrate d'ammonium ou si l'on permet à la poussière de s'accumuler sur des conduits de vapeur. Ne pas utiliser d'appareils électriques de chauffage dans les dépôts.</td>
<td>S'il y a lieu de chauffer une installation d'emmagasinage, il est recommandé que la chaleur soit fournie par un appareil de chauffage électrique ou par de la vapeur à basse pression, de l'eau chaude ou un autre transporteur de chaleur enfermé, la source de cette chaleur se trouvant dans un bâtiment distinct.</td>
<td>Le chauffage du magasin de stockage et de ses annexes attenantes ne peut être réalisé que par eau chaude, vapeur produite par un générateur thermique ou tout autre système présentant un degré de sécurité équivalent, à l'exception de tout fluide caloporteur combustible.</td>
</tr>
<tr>
<td>Eclairage</td>
<td>Non précisé</td>
<td>Toute installation d'éclairage ne devra pas dépasser 54°C. Si la température est supérieure à 38°C, il faut séparer le nitrate d'ammonium de la source de chaleur d'une distance minimale de 76 cm.</td>
<td>L'éclairage artificiel se fera par lampes électriques sous enveloppe protectrice en verre ou par tout procédé présentant des garanties équivalentes. Les appareils d'éclairage fixes ne seront pas situés en des points susceptibles d'être heurtés en cours d'exploitation, ou seront protégés contre les chocs.</td>
</tr>
</tbody>
</table>
5.4.5 Exploitation et sécurité

<table>
<thead>
<tr>
<th>Exploitation et sécurité</th>
<th>Angleterre</th>
<th>Canada</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consignes contre les sources de chaleur</td>
<td>Eloigner des gazoducs, des stockages de carburant, du bois destiné à la construction, de liquides inflammables, de solides inflammables et de matériaux combustibles.</td>
<td>Mettre une distance de 76 cm entre le nitrate d'ammonium et des objets de plus de 38°C. Il est interdit de fumer ou de se servir de chauffe-tarticots ou de matériel à souder ou autre matériel à flamme nue ou à élément électrique découvert, à l'intérieur d'une installation d'emmagasinage.</td>
<td>Toute construction en matière combustible non ignifugée, ainsi que tout amas de matières combustibles, sera éloignée du magasin de stockage afin d'éviter la propagation d'un éventuel incendie. Une distance minimale de 10 mètres sera respectée.</td>
</tr>
<tr>
<td>Risque d'une détonation, consignes pour la gestion des piles</td>
<td>Limiter la masse d'une pile à 300 tonnes de vrac, si possible conditionner le nitrate d'ammonium en sacs de 50 kg fermés hermétiquement et suffisamment résistants.</td>
<td>Séparer les produits en vrac au minimum par un mur anti-feu, disposer des extincteurs ABC et des bouches d'incendie à proximité des piles. Protéger l'installation de la foudre.</td>
<td>Séparer les produits en vrac par un mur anti-feu et des portes pare-flammes. Disposer des extincteurs, des robinets et/ou des lances à incendie à l'intérieur du local. Tout risque de confinement doit être éliminé. La température de l'engrais devra être contrôlée à l'arrivée dans le dépôt.</td>
</tr>
<tr>
<td>Fumer</td>
<td>Interdit</td>
<td>Interdit</td>
<td>Interdit</td>
</tr>
<tr>
<td>Réagir face à la contamination</td>
<td>Ne pas stocker d'autres produits sur la même aire. Ne pas permettre au nitrate d'ammonium d'entrer en contact avec des produits chimiques de propriétés incompatibles (liquides inflammables, nitrate, métaux,...). Retirer le nitrate d'ammonium souillé et laver les objets ayant été à son contact.</td>
<td>Les piles ou compartiments doivent être classés et disposés de façon que les matériaux qui ont été emmagasinés le plus longtemps soient utilisés les premiers.</td>
<td>Aucun déversement possible de liquides inflammables ou de substances combustibles jusqu'au stockage. Les fractions d'engrais contaminées ne doivent pas être remises ou laissées sur les tas d'engrais.</td>
</tr>
<tr>
<td>Accès pour les secours</td>
<td>L'accès à l'ensemble du stockage doit être possible pour les secours.</td>
<td>L'accès à l'ensemble du stockage doit être possible pour les secours.</td>
<td>Maintenir une voie dégagée pour les camions-pompiers des sapeurs-pompiers. Cette voie doit conduire à toutes les issues du local de stockage.</td>
</tr>
<tr>
<td>Formation du personnel</td>
<td>Sur la lutte anti-incendie et sur les risques chimiques grâce à des exercices.</td>
<td>Non précisé</td>
<td>Non précisé</td>
</tr>
<tr>
<td>Système de détection d'anomalies</td>
<td>Dans le cas d'un stockage important, envisager la mise en place d'un système de détection anti-feu et/ou la surveillance des lieux par des personnes compétentes.</td>
<td>Non précisé</td>
<td>La détection automatique d'incendie ou de combustion par détecteurs de gaz, de chaleur ou de fumée est obligatoire dans le magasin de stockage. Des postes d'alerte sont installés dans le magasin de stockage.</td>
</tr>
<tr>
<td>Propreté de l'aire de stockage</td>
<td>Nettoyer et veiller à empêcher toute contamination. Le chargement et le déchargement sous le mauvais temps (comme la pluie ou la neige) ne sont pas recommandés à cause du risque de mottage.</td>
<td>Nettoyer et veiller à empêcher toute contamination.</td>
<td>Le sol devra être parfaitement nettoyé avant entreposage de l'engrais. L'état des stocks (volume, emplacement, qualité) doit être mis à jour régulièrement.</td>
</tr>
<tr>
<td>Mesures de désenfumage</td>
<td>Non précisé</td>
<td>Non précisé</td>
<td>Des aménagements d'air doivent être disposés afin d'obtenir un bon fonctionnement du désenfumage.</td>
</tr>
</tbody>
</table>
Malgré leurs différents domaines d’application, les législations abordent, dans l’ensemble, les mêmes grands thèmes. Elles insistent toutes sur les principales propriétés du nitrate d’ammonium qui sont à l’origine d’accidents.

Néanmoins, la législation française semble la plus stricte et la plus complète en ce qui concerne le stockage.

En Allemagne, la législation a été fortement modifiée suite à l’explosion d’Oppau en 1921 et limite désormais à 28% la teneur en azote des ammonitrates produits sur le sol allemand. Cependant, l’importation d’ammonitrates à 33,5% n’est pas interdite.

Au niveau de la législation française, il est assez surprenant que l’on puisse stocker des quantités importantes de nitrate d’ammonium sans être soumis à déclaration. En effet, il est légal de stocker jusqu’à 100 tonnes sans avertir les autorités compétentes.
5.5 Récapitulatif des facteurs de risques majeurs

La sensibilité du nitrate d’ammonium à la détonation est fortement accrue :

- par une source de chaleur,
- par l’augmentation de la surface spécifique (diminution de la granulométrie, augmentation de la porosité, diminution de la densité, altération de la tenue mécanique des granulés par variation de la forme allotropique,…),
- par la présence d’impuretés d’origine chimique (matières organiques, métaux, dérivés chlorés,…),
- par un confinement.

Des précautions de manipulation sont à respecter impérativement :

- ne pas utiliser de matériaux de construction combustibles ou métalliques non protégés pour la conception des locaux de stockage et veiller à la tenue des propriétés de ces matériaux,
- veiller à la propreté du lieu de stockage,
- vider de façon régulière le contenu du stockage et nettoyer la dalle le supportant,
- effectuer de façon régulière la maintenance des appareils liés au stockage,
- renforcer la lutte anti-incendie (déTECTeurs de chaleur, évacuation des fumées, lances anti-incendie),
- éviter le contact avec le matériel électrique ou de chauffage,
- respecter les distances de sécurité,
- ne pas fumer,
- éviter la variation des formes cristallographiques, notamment celle à 32°C,
- éviter le mottage des tas de stockage (conditionnement en sacs, tas de petites quantités, faible humidité).
5.6 Accidents [5, 33, 34]

L’histoire industrielle fut émaillée de plusieurs accidents au cours du XXème siècle. Les plus importants, mettant en cause le nitrate d’ammonium, sont décrits ci-dessous.

➢ 21 septembre 1921, Oppau, Allemagne

La première catastrophe industrielle impliquant le nitrate d’ammonium survint à Oppau en Allemagne le 21 septembre 1921. Un mélange de 4500 tonnes de nitrate d’ammonium et de sulfate d’ammonium détona, causant la mort de 561 personnes (d’après die Zeit, 430 à 591 personnes selon les autres sources) et provoquant des dégâts conséquents. D’après les indications de BASF, propriétaire de l’usine, l’onde de choc fut si forte qu’elle entraîna des dégâts sur des habitations situées à 90 km. Le cratère résultant de cette détonation atteignit des dimensions de 75 m de diamètre et 15 m de profondeur. L’enquête minutieuse sur les causes de l’accident fit ressortir l’utilisation de dynamite pour briser les blocs de nitrate d’ammonium hydraté (nitrate d’ammonium pris en masse). Cette procédure était d’usage courant pour fractionner les blocs de nitrate d’ammonium lors du stockage jusqu’à cette explosion. Auparavant, elle avait été utilisée plus de 20 000 fois avec succès. Cet accident fit prendre conscience aux industriels des risques générés par le nitrate d’ammonium considéré jusque là comme non explosif. Désormais, les enquêteurs ont admis que le mélange 50/50 de nitrate et de sulfate d’ammonium dans des conditions de confinement et sous une densité suffisamment faible peut exploser. En outre, l’enquête démontra que quelques mois avant l’accident, le procédé de fabrication avait subi quelques modifications ; l’humidité renfermée par les granulés était moindre d’où une densité apparente plus faible. De plus, la composition du mélange à l’intérieur du silo n’était pas uniforme. Certaines zones étaient plus riches en nitrate d’ammonium. Il a été prouvé par des expériences que ces modifications de procédé engendraient une sensibilité plus grande du mélange.

La difficulté à amorcer le nitrate d’ammonium est également illustrée lors du bombardement par l’armée de l’air allemande pendant la deuxième guerre mondiale d’un site chimique contenant du nitrate d’ammonium près de Rouen. Aucune explosion consécutive à cette attaque n’eut lieu.

L’année 1947 fut marquée par deux catastrophes dues au nitrate d’ammonium : la première eut lieu à Texas City aux Etats-Unis et la seconde en France à Brest.
16 avril 1947, Texas City, USA[35, 36]

A Texas City, l’explosion survint dans le cargo français, le SS Grandcamp, contenant plusieurs milliers de tonnes de nitrate d’ammonium. Le nitrate d’ammonium incriminé était prévu pour un usage agricole et référencé en tant que tel. Sa teneur en azote était de 32,5%. Il comprenait, en outre, 4 à 5% de charges minérales et 1% d’enrobant constitué par un mélange de paraffine, résines et vaseline. Il était emmagasiné dans des sacs en papier imperméabilisé par imprégnation de bitume. Or, le nitrate d’ammonium est un puissant oxydant et un entreteneur de combustion.

Une cigarette alluma un feu. Les marins jetèrent de l’eau sur les conteneurs une fois le feu découvert. Devant l’inefficacité de ce procédé et pour ne pas ruiner la cargaison, les écoutilles furent fermées et l’injection de vapeur fut activée. Malheureusement, la vapeur ne pouvait pas étouffer un feu dû à un comburant vu que celui-ci fournit l’oxygène nécessaire à une combustion. Au contraire, la vapeur apporta de la chaleur à la matière en décomposition. Une heure après la découverte du feu, l’explosion se produisit. Elle toucha le complexe chimique de Texas City appartenant à Monsanto. Les experts estiment que la puissance de l’explosion fut supérieure à celle des bombes atomiques lâchées sur Hiroshima et Nagasaki. Le feu brûla en continu pendant une semaine. Le bilan final de cette catastrophe fait état de 561 morts et de 3000 blessés.

28 juillet 1947, Brest, France[37]

Aucun accident majeur dû au nitrate d’ammonium n’est à recenser jusqu’en 1988. D’autres explosions meurtrières ont cependant eu lieu. Parmi elles, on trouve :

29 novembre 1988, Kansas City, USA[38]

L’accident survint sur un chantier utilisant des explosifs à base de nitrate d’ammonium. Etaient présents sur le site en plus du nitrate d’ammonium, de l’essence ainsi que des pièces de métal. Cela a augmenté la puissance de l’explosion, qui a détruit la majorité des bâtiments sur les lieux. Les conséquences ont été graves, avec la mort de plusieurs personnes et des blessures importantes.

© : http://www.letelegramme.com/index.cfm?page=telegdisplay&class=articleletelegramme&object=histoire_1947&method=affiche_entier

Section Spéciale / Mastère Chimie des Procédés – Nitrate d’ammonium 60
que des pastilles d’aluminium. L’aluminium à hauteur de 5% dans la composition du nitrate d’ammonium servait à amplifier la force de l’explosion. Celle-ci retentit pendant la nuit et fut ressentie jusqu’à 45 km de l’origine bien que la quantité de nitrate d’ammonium impliquée fut de beaucoup inférieure à celle des accidents industriels.

➢ 13 décembre 1994, Sioux City, USA

Un autre cas méritant d’être relaté est celui de Terra Corp. près de Sioux City aux USA. Sa particularité réside dans l’étape du procédé au cours de laquelle se produisit l’explosion. En effet, contrairement aux autres catastrophes industrielles, l’explosion eut lieu au cours de la fabrication. Au moment de l’accident, 75 tonnes de nitrate d’ammonium, destinées à la fabrication d’engrais, étaient à l’intérieur du réacteur. La première détonation eut lieu dans le réacteur. La deuxième eut lieu dans le réservoir de nitrate d’ammonium. Le bilan de cette catastrophe fait état de 4 morts et de 18 blessés.

➢ 21 septembre 2001, Toulouse, France

D’après le rapport de l’Inspection Générale de l’Environnement, l’explosion sur le site de la Grande Paroisse (groupe Atofina) « est survenue dans un stockage de nitrate d’ammonium déclassé qui était autorisé pour 500 tonnes et contenait 300 à 400 tonnes de produit le jour de l’explosion. Le déclassement était dû à des anomalies dans la granulométrie mais aussi dans la composition des produits. (...) L’explosion s’est produite à 10h17 dans le bâtiment 221, elle a provoqué la mort de 30 personnes dont 22 dans l’usine et 8 à l’extérieur, 2500 blessés dont une trentaine dans un état grave, (...) ». Elle a causé d’importants dégâts dans toute la ville de Toulouse jusqu’à des distances pouvant atteindre plusieurs kilomètres. L’ensemble du préjudice matériel est estimé à près d’un milliard d’euro. Il s’agit du plus grave incident chimique de l’après guerre survenu en France. Il s’agirait également de la première explosion industrielle accidentelle d’ammonitrates en vrac, non précédée d’un incendie.

➢ Points communs

De l’ensemble de ces accidents, force est de constater que leur origine est rarement due à un nitrate d’ammonium qui n’a pas été souillé par d’autres composés. L’amorçage de la décomposition peut être provoqué par des impuretés organiques, un confinement excessif, un incendie et/ou une explosion. Généralement, une grande partie de ces conditions sont regroupées dans le cas de la détonation.
CONCLUSION

Cette étude permet de souligner le fait que la stabilité du nitrate d’ammonium varie selon les conditions de manipulation. Stable lorsqu’il est pur ou non sensibilisé, à température et pression ordinaires, le nitrate d’ammonium est néanmoins intrinsèquement explosif puisqu’il possède un caractère à la fois comburant et combustible. Il entre de ce fait dans la composition d’un bon nombre de mélanges explosifs où il peut être associé à du fuel ou à un explosif fort, qui augmentent sa sensibilité à la détonation.

Son caractère explosif a été la cause, au cours XXᵉ siècle, d’un certain nombre d’accidents survenus lors de stockages ou de transports, par combinaison de plusieurs facteurs tels que la présence d’impuretés mélangées au nitrate d’ammonium, un confinement, une source de chaleur importante.

C’est pour cela que le strict respect de la réglementation en vigueur est indispensable pour prévenir tout risque d’incendie ou d’explosion lié au nitrate d’ammonium.

Cependant, il est à noter qu’il n’existe pas de réglementation concernant des stockages de nitrate d’ammonium de capacité inférieure à 100 tonnes, alors que l’explosion de quantités plus faibles pourrait entraîner des dégâts considérables.
GLOSSAIRE

Aérobie : qui peut vivre au contact de l’air, qui se déroule en présence d’oxygène.

Allotropique (forme) : variétés structurales différentes d’un même composé chimique.

Amines grasses : molécules dipolaires fabriquées à partir de suifs d’abattoirs, c’est-à-dire par des chaînes linéaires de 12 à 20 carbones avec une fonction amine à une extrémité (et parfois une fonction acide à l’autre extrémité).

Ammoniac : gaz, de formule NH₃, composé d’azote et d’hydrogène, incolore et d’odeur suffocante, extrêmement soluble dans l’eau.

Ammoniaque : solution aqueuse de l’ammoniac.

Autotrophe : capable de créer leurs propres tissus à partir d’éléments minéraux, d’eau et de gaz carbonique puisé dans l’air.

Bactéries : micro-organismes constitués d’une seule cellule, considéré comme appartenant à un règne autonome, ni animal, ni végétal. À la différence avec les virus, les bactéries possèdent à la fois de l’ADN et de l’ARN et sont capables de se reproduire de façon autonome par division cellulaire.

Batch : procédé discontinu.

Biosphère : ensemble des êtres vivants qui se développent sur terre.

Carburant : qui contient une matière combustible.

Chimiolithotrophe : capable de créer leurs propres tissus à partir d’éléments chimiques non organiques et qui sont oxydés.

CL 50 (concentration létale) : niveau de concentration d’un toxique dans l’atmosphère qui provoque le décès de la moitié de la population animale sur laquelle une expérience a été menée.

Classe (transport) : catégorie de danger dans lesquelles sont répertoriées les marchandises transportées.

Colloïde : corps chimique capable de prendre l’état colloïdal, c’est à dire l’apparence de la colle ou de la gelée, lorsque ses molécules dispersées dans un solvant se regroupent en agrégats portant des charges électriques de même signe.

Comburant : substance capable d’entretenir la combustion d’un combustible (ex : l’oxygène de l’air).

Combustible : substance qui peut brûler.
Déflagration : correspond à une combustion vive et se caractérise par la progression de la surface en ignition\(^*\) en sens inverse des gaz et fumées produits par la réaction. Les substances subissant ce type de décomposition sont utilisées comme poudres propulsives (exemple : propergols).
Remarque : vitesse de déflagration \(< 1000 \text{ m.s}^{-1}\).

Densité \(d_{20}\) : donnée pour un liquide par le rapport de la masse d’un volume de liquide en général pris à 20°C à la masse du même volume d’eau pris à 4°C (maximum de densité pour l’eau égal à 1,0000, par définition).

Détonation : peut être provoquée par un choc mécanique, une onde de choc ou encore par la transition spontanée d’un régime de déflagration à un régime de détonation. Dans le cas de la détonation, les produits de la réaction et la surface de décomposition se propagent dans la même direction (avec une vitesse de 1000 à 10000 m.s\(^{-1}\)). Les substances explosives subissant ce type de décomposition sont appelées explosifs brisants ou détonants.

DL 50 (dose létale) : quantité d’une substance administrée en une fois qui provoque le décès de la moitié de la population animale sur laquelle la substance a été expérimentée.

Dolomie : carbonate de calcium et de magnésium.

Dyspnée : trouble de la respiration accompagnant les affections respiratoires ou cardiaques et certains accidents neurologiques.

Électrode Standard à Hydrogène : électrode en platine plongée dans une solution acide où bulle de l’hydrogène dans des conditions telles que : pression en hydrogène = 1 atm et activité des ions H\(^+\) = 1.

Emulsion : dispersion d’un liquide dans un autre, dans lequel il ne se mélangé pas.

Engrais : « matières fertilisantes dont la fonction principale est d’apporter aux plantes des éléments directement utiles à leur nutrition » (définition AFNOR, norme NF U 42-001)

Endothermique : qualifie une réaction qui absorbe de la chaleur.

Exothermique : qualifie les réactions qui se produisent avec un dégagement de chaleur.

Granulométrie : étude de la répartition des différentes tailles d'une population de particules.

Hydrophile : qui a des affinités avec l’eau.

Hygroscopique : se dit d’une substance ayant une grande affinité pour l’eau, absorbant l’humidité de l’environnement dans laquelle elle se trouve (exemple : chlorure de calcium ou sulfate de magnésium).

Ignition : état des corps qui dégageant de la chaleur et de la lumière en brûlant.

Installations classées : exploitations susceptibles de présenter un inconvénient pour la santé publique ou pour l’environnement. Ces installations sont soumises à déclaration ou à
autorisation préalable et doivent se conformer à des règles spécifiques d’aménagement et de fonctionnement.

Limite inférieure d’explosivité : (LII ou LIE) d’un gaz ou d’une vapeur dans l’air est la concentration minimale en volume dans le mélange au-dessus de laquelle il peut être enflammé. On peut lui faire correspondre une température limite inférieure d’inflammabilité.

Limite supérieure d’explosivité : (LSI ou LSE) est la concentration maximale en volume dans le mélange au-dessous de laquelle il peut être enflammé. On peut lui faire correspondre une température limite supérieure d’inflammabilité.

Macle : association de cristaux de même nature selon des lois géométriques précises liées aux éléments du réseau cristallin considéré. Elle peut être simple ou multiple.

Marne : roche sédimentaire argileuse riche en calcaire.

Masse molaire : masse d’une mole de composé donné, c’est-à-dire de $6,02 \times 10^{23}$ molécules.

Métalloïde : élément intermédiaire entre un métal et un non-métal, qui forme avec l’oxygène des composés acides ou neutres.

Méthémoglobinémie : réduction de la capacité du sang à transporter de l’oxygène.

Mottage : propriété d’un solide qui se présente facilement sous forme de mottes, comme le ciment.

Noir de platine : platine au degré d’oxydation zéro.

Numéro CAS : numéro donné à une entité chimique. Classement international (Chemical Abstract Service).

pH : mesure de l’acidité ou de la basicité d’un milieu. La neutralité en milieu aqueux correspond à un pH 7, l’acidité à des pH inférieurs à 7 et la basicité à des pH supérieurs à 7.

Phosphore rouge : phosphore sous forme de poudre rouge à violette, fondant à 590°C utilisé en pyrotechnie.

Point de fusion : température à laquelle le produit passe de l’état solide à l’état liquide (pratiquement indépendant de la pression) ou inversement (température de solidification).

ppm (partie par million) : unité de concentration équivalente au mg.L$^{-1}$

Rhombique : sous forme de losange.

Sensibilité : dépend de l’énergie d’activation minimale nécessaire pour obtenir une décomposition auto-entretenue de la substance explosive.

Stabilité (pour un explosif) : traduit la capacité à conserver intactes ses propriétés explosives au cours du temps. La stabilité d’un explosif dépend non seulement des conditions dans
lesquelles il a été synthétisé mais aussi des conditions de stockage (température, taux d’humidité, type de matériaux de stockage...).

Surfactant (tensioactif) : molécule facilitant la mise en émulsion de solutions biphasiques (phase aqueuse / phase organique) grâce à sa constitution à la fois hydrophile et hydrophobe.

Tension de vapeur : pression partielle d’un composé volatil en mélange gazeux avec d’autres gaz (et) ou en présence de sa forme liquide.

Toxicité aiguë : effets provoqués par une exposition de courte durée et à forte dose à un toxique.

Viscosité : propriété physique qu’a tout fluide d’opposer une résistance aux forces qui tendent à déplacer les unes par rapport aux autres les particules qui le constituent.
BIBLIOGRAPHIE

[10] West CD, Journal of the American Chemical Society - The crystal structure of rhombic ammonium nitrate, 1932, 54, 2256-2260 ;
[12] http://barns.ill.fr/cgi-bin/icsd/icsd.cgi ;
[15] Handbook of Chemistry and Physics 70th éd., Physical constants of inorganic compounds B-71,
 Electrochemical series D-153 ;
[23] Info Chimie Magazine - Le nitrate d’ammonium dans le collimateur, 2001, n° 433 ;
[26] Encyclopedia of Chemical Technology - Explosives and propellants, Vol. 9 ;
[28] Fiche de données de sécurité PROLABO selon la directive européenne 91/155/CEE date de mise à jour 28.04.1994 ;

Section Spéciale / Mastère Chimie des Procédés – Nitrate d’ammonium
Section Spéciale / Mastère Chimie des Procédés – Nitrate d’ammonium

[34] http://www.chron.com/content/chronicle/metropolitan/txcity/index.html ;
[37] http://www-brestecoles.enst-bretagne.fr/prevert/cm2/oceanp71.htm ;
[38] http://www.noip.net/journal/explosion.html ;
[40] Introduction à la chimie des ingénieurs, p 342-346 ;
[41] Molina, Les explosifs et leur fabrication, 1932, H. Dunod et E. Pinat éditeurs ;
ANNEXE

LES EXPLOSIFS

1. Historique[24]

Premier agent propulsif utilisé dans les armes à feu, la poudre noire (mélange de salpêtre ou nitrate de potassium, de soufre et de carbone) a été le premier agent explosif employé pour l’abattage et le sautage dans les mines et les carrières. Le début de son emploi en Europe dans une mine de charbon en Hongrie date de 1630.

Il a fallu attendre la deuxième moitié du XIXème siècle pour voir apparaître de nombreuses familles d’explosifs modernes à usages civils divers, encore appelés « explosifs industriels » :

- la nitroglycérine, découverte par l’italien Sobrero en 1847 et utilisée quelques années plus tard comme puissant explosif de travaux publics par la famille suédoise Nobel
- la dynamite-Guhr et la dynamite-gomme inventées par Alfred Nobel respectivement en 1867 et en 1875, grâce auxquelles la nitroglycérine fixée dans la première part de la terre d’infusoires et dans la seconde part de la nitrocellulose devenait beaucoup moins délicate à mettre en œuvre
- les panclastites du français Eugène Turpin (1881) obtenues par mélange d’une substance oxydante N_2O_4 (hydrazine) et d’un combustible comme un hydrocarbure ou un sulfure de carbone
- les explosifs nitratés du belge Favier (1884) à base de nitrate d’ammonium, encore appelés « explosifs de sûreté »
- les explosifs à l’oxygène liquide de l’allemand Linde (1895)
- les explosifs chloratés de l’anglais Street (1897) (appelés « cheddites » en France) rendus moins sensibles par la présence d’huile de ricin.

Deux de ces familles ont survécu : les dynamites et les explosifs nitratés. La première doit sa survie à la puissance et à la brisance des explosifs riches en nitroglycérine, tandis que la seconde tient la sienne du faible coût du nitrate d’ammonium.

2. Généralités[39, 40]

Un explosif peut être un composé défini ou un mélange de plusieurs constituants (explosif composite). Une substance explosive, solide ou liquide, se décompose en libérant en un temps très court un volume considérable de gaz (généralement O_2, N_2, NO_x, H_2O, CO_2,...) et de fumées. Ce phénomène de décomposition, nommé explosion, dégage de façon quasi instantanée une quantité importante d’énergie mécanique et thermique. Cette décomposition se produit sans apport d’oxygène de l’air, par réaction entre groupements atomiques à caractère comburant (O₂, NO₂, NO₃, ClO₃, O-O) et carburant” (CₓHᵧ). Elle a pour origine une excitation qui peut être plus ou moins énergétique selon la nature de la substance explosive. Cela peut être :

- une élévation de température,
- un choc,
- des frottements,
- une étincelle électrique,
- un amorçage à l’aide d’un détonateur.
Les explosifs utilisent une réaction d’oxydation mettant en jeu un réducteur organique et de l’oxygène. Ces réactions sont spontanées et fortement exothermiques. Elles sont d’autant plus rapides que l’oxydant et le réducteur sont physiquement très proches l’un de l’autre, intimement mélangés ou, mieux encore, présents dans la même molécule. Les risques d’explosion sont ainsi très grands :
- pour des mélanges de gaz qui constituent un mélange intime, comme par exemple un mélange de gaz combustibles (H₂, CH₄, C₂H₂, vapeurs organiques, etc.) avec de l’air ou de l’oxygène. L’explosion la plus violente se produit pour un mélange stœchiométrique des gaz. Pour toute autre composition, le gaz en excès dilue les composants entrant en réaction : on parle de limites inférieure* et supérieure d’explosivité*,
- pour une poudre très fine (importante surface spécifique) mélangée à de l’air ou à de l’oxygène. Le comburant et le combustible sont, là aussi, intimement mélangés.

Les explosions les plus violentes sont néanmoins obtenues lorsque le comburant et le combustible, c’est-à-dire l’oxydant et le réducteur, sont présents dans la même molécule (exemple : le nitrate d’ammonium NH₄NO₃).

Remarque : la présence dans la même molécule de l’oxydant et du réducteur dans des proportions stœchiométriques conduira à une explosion brisante, alors qu’un mélange hétérogène ou un excès d’un des deux réactifs conduira à une explosion plus progressive.

3. Caractéristiques et définitions[39-41]

3.1 Décomposition

Il existe deux types de décompositions explosives : la déflagration et la détonation.

- La déflagration correspond à une combustion vive. Elle se caractérise par la progression de la surface en ignition* en sens inverse des gaz et fumées produits par la réaction. Les substances subissant ce type de décomposition sont utilisées comme poudres propulsives (exemple : propergols).

Remarque : vitesse de déflagration < 1000 m.s⁻¹.

- La détonation est provoquée par un choc mécanique, une onde de choc ou encore par la transition spontanée d’un régime de déflagration à un régime de détonation. Dans le cas de la détonation, les produits de la réaction et la surface de décomposition se propagent dans la même direction (avec une vitesse de 1000 à 10000 m.s⁻¹). Les substances explosives subissant ce type de décomposition sont appelées explosifs brisants ou détonants.

Remarque : le caractère brisant d’un explosif traduit son aptitude à fragmenter les matériaux placés au voisinage immédiat du lieu de détonation.

3.2 Différents types d’explosifs

Les explosifs sont classés selon leur énergie et leur vitesse de combustion. On distingue ainsi :
- les explosifs ordinaires qui développent une énergie et une rapidité de combustion relativement limitées comme par exemple les poudres noires,
- les explosifs puissants dans lesquels l’énergie atteint un haut degré d’intensité accompagnée d’une très grande rapidité de combustion (la dynamite appartient à cette classe d’explosif),
- les explosifs détonants ou brisants caractérisés par leur très haut degré d’énergie et de rapidité de combustion.

Parmi les explosifs brisants, 3 catégories peuvent être distinguées :

- les explosifs primaires qui détonent sous l’influence d’un apport énergétique faible tel qu’une flamme, un choc modéré ou une étincelle électrique (exemple : fulminate de mercure, peroxyacétone, staphylate de plomb)
- les explosifs secondaires qui détonent sous l’influence d’une énergie d’activation beaucoup plus importante apportée par un choc puissant ou une onde de choc explosive produite à l’aide d’un détonateur constitué d’un explosif primaire (c’est-à-dire une amorce). La quantité minimale d’explosif nécessaire pour assurer la détonation est fonction de la nature de l’initiateur et de l’explosif amorcé (exemple : TNT, acide picrique, RDX).
- les explosifs de la dernière catégorie qui possèdent une sensibilité telle, qu’un simple choc, parfois un simple frottement, suffit pour les faire détoner.

3.3 Notion de stabilité

En dehors de leurs différentes applications, les substances explosives doivent avoir une certaine stabilité, notamment lors du stockage. La stabilité d’un explosif traduit sa capacité à conserver intactes ses propriétés explosives au cours du temps. Dans le cas d’un explosif composite, les différents constituants ne doivent pas interagir chimiquement entre eux (pendant le stockage). La stabilité d’un explosif dépend non seulement des conditions dans lesquelles il a été synthétisé mais aussi des conditions de stockage (température, taux d’humidité, type de matériaux de stockage...). Par exemple, une température élevée de stockage ou la présence d’impuretés contribuent à diminuer la stabilité d’un explosif.

3.4 Notion de sensibilité

La sensibilité d’un explosif dépend de l’énergie d’activation minimale nécessaire pour obtenir une décomposition auto-entretenue de la substance explosive. Il existe une méthode courante permettant de diminuer la sensibilité d’un explosif. Il s’agit de la désensibilisation ou flegmatisation : elle consiste à mélanger l’explosif à une substance inerte ou peu dangereuse afin de le rendre moins sensible aux actions mécaniques. Ainsi, la sécurité d’utilisation (manipulation, transport) s’en trouve renforcée. En effet, les agents flegmatisants diminuent les performances des explosifs en abaissant leur vitesse de détonation. Ils sont donc ajoutés en quantité telle qu’ils puissent remplir leur fonction sans pour autant altérer excessivement les propriétés de l’explosif.

De même qu’il est possible de désensibiliser un explosif, il est également possible de le sensibiliser en lui donnant une forme rigide ou compacte pour localiser les effets mécaniques et d’échauffement, ou en ajoutant une substance sensibilisante.

3.5 Bilan en oxygène

Les substances explosives n’empruntent pas au milieu extérieur l’oxygène nécessaire à leur combustion. En effet, les molécules explosives contiennent généralement des fonctions chimiques riches en oxygène qui permettent l’oxydation partielle ou totale des autres atomes de la molécule.

Le bilan en oxygène peut être défini comme le rapport de la quantité d’oxygène présente dans la molécule sur la quantité d’oxygène nécessaire pour transformer la molécule en CO₂, N₂, H₂O, SO₂.
On parle également de balance en oxygène. Celle-ci distingue :
• les explosifs suroxygénés dont la structure chimique comporte plus d’atomes d’oxygène qu’il n’est nécessaire pour l’oxydation totale,
• les explosifs sous-oxygénés pour lesquels l’oxydation n’est que partielle.

Pour une molécule explosive de formule brute $C_xH_yO_zN_u$, on peut déterminer s’il s’agit d’un explosif sur ou sous-oxygéné :
- si $z \geq 2x + y/2$, l’explosif est suroxygéné,
- si $z < 2x + y/2$, l’explosif est sous-oxygéné.